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Abstract. We refine the understanding of continuous dependence on coefficients of
solution operators under the nonlocal H-topology viz Schur topology in the setting
of evolutionary equations in the sense of Picard. We show that certain components
of the solution operators converge strongly. The weak convergence behaviour known
from homogenisation problems for ordinary differential equations is recovered on the
other solution operator components. The results are underpinned by a rich class of
examples that, in turn, are also treated numerically, suggesting a certain sharpness of
the theoretical findings. Analytic treatment of an example that proves this sharpness
is provided too. Even though all the considered examples contain local coefficients, the
main theorems and structural insights are of operator-theoretic nature and, thus, also
applicable to nonlocal coefficients. The main advantage of the problem class considered
is that they contain mixtures of type, potentially highly oscillating between different
types of PDEs; a prototype can be found in Maxwell’s equations highly oscillating
between the classical equations and corresponding eddy current approximations.

1. Introduction

The theory of homogenisation addresses the effective behaviour of solutions of certain
differential equations with highly oscillatory coefficients. The mathematical theory roots
in the late 60s of the 20th century, and a standard account of the theory can be found in
the seminal monographs [BLP78, ZKO94, Tar09]; with a more elementary introduction
in [CD99]. With a focus on elliptic differential equations in variational form, a general
viewpoint has led to the development of the notions of G- and H-convergence, see, e.g.,
[MT97, Tar09, CD99]. In these notions, the main object of study were sequences of certain
matrix-valued multiplication operators. In order to understand homogenisation problems
for evolutionary equations in the sense of Picard, a class of abstract operator equations
providing a unified set-up for many time-dependent (partial) differential equations of
mathematical physics, see [Pic09], a more operator-theoretic perspective needed to be
advanced. We refer to [STW22, Chapters 13 and 14] and the references therein to get a
picture of the first ten years of research concerning homogenisation theory for evolutionary
equations. In the course of understanding this realm of questions in [Wau18b], the notion of
nonlocal H-convergence has been developed, which is a nonlocal generalisation of classical H-
convergence, allowing for general operator coefficients. In turn, this led to the development
of the Schur topology, see [NW22, Wau25, BSW24], with the main result in [BSW24] as
culmination point, establishing continuous dependence results for evolutionary equations if
the operator coefficients are endowed with a holomorphic variant of the Schur topology.
Note that [BSW24] together with the compactness statement in [BEW24] (which in turn
is a particular perspective given by the more general framework for Friedrichs systems in
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[BEW25]) provides a good understanding of homogenisation problems for evolutionary
equations.

Even though the theoretical understanding is well-developed, a decent list of rather
involved examples illustrating the theory is still missing. Thus, the first aim of the
present article is to fill this gap. Moreover, the fundamental difference of assumptions in
[BSW24] compared to the G-compactness statement in [BEW24] is a certain compactness
condition, which is needed in the former and rather irrelevant for the latter. Hence, a
second insight gathered here is that the compactness condition actually improves weak
convergence to strong convergence on parts of the solution operator. Analytic treatment
of one example will yield a decomposition into two infinite-dimensional subspaces such
that one part converges strongly and the other is known to only converge weakly. Thirdly,
we shall underpin our theoretical findings by treating all the examples also numerically.
These numerical experiments additionally highlight our theoretical findings. The question,
whether the part with strong convergence that we obtain is maximal, is an avenue open
for future research.

We emphasise that the list of examples range from ordinary differential equations to
higher dimensional partial differential equations, where the latter class also contains mixed
type equations with highly oscillatory coefficients. In particular, an example for Maxwell’s
equations is treated, which, after the homogenisation process, triggers a memory effect
in the limit equation, which is classical and can also be found in [Wel01, Wau16]. The
list of examples stresses the versatility of the concept of evolutionary equations and the
applicability of the main convergence result in [BSW24]. The Schur topology provides the
precise setting enabling us to compute the effective evolutionary equations in a systematic
manner. The numerics are based on [FTW19] developed precisely for mixed type problems
written in the form of evolutionary equations.

We quickly summarise the organisation of the paper. In Section 2, we recall the general
setting of evolutionary equations together with its corner stone Picard’s Theorem 2.2.
Section 3 serves to present a round up of results of homogenisation theory needed here. In
particular, we recall the notion of nonlocal H-convergence and provide the main convergence
result of [BSW24] together with the refinement concerning the quality of convergence. In
Section 4 we state and prove some additional results concerning homogenisation theory
that either have been overlooked so far or have only been announced in the literature. The
list of examples can be found in Section 5; the corresponding numerical study is provided
in Section 6. Section 7 contains a small conclusion. Some supplementary material can be
found in Section A.

The Hilbert spaces that we will consider are anti-linear in the first and linear in the
second argument. For a Hilbert space H, a bounded linear operator A ∈ Lb(H), and c > 0,
we will write ReA ≥ c instead of

∀h ∈ H : Re⟨h,Ah⟩H ≥ c⟨h, h⟩H = c∥h∥2
H,

and ReA > 0 if we deem the exact knowledge of c > 0 unimportant. If we write
A : dom(A) ⊆ H1 → H2 for Hilbert spaces H1, H2, then A stands for a possibly unbounded
operator with domain dom(A) and the adjoint A∗ is considered with respect to H1 and
H2.

2. The Setting: Evolutionary Equations

In this section, we recall the basic setting of evolutionary equations in the sense of
Picard, [Pic09]. All results presented in the current section can be found with complete
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proofs in [STW22]. Let H be a Hilbert space, ν > 0 and we set

L2,ν(R; H) :=
{
f ∈ L1,loc(R; H)

∣∣∣∣ˆ
R
∥f(t)∥2

He−2νt dt < ∞
}
.

This is a Hilbert space endowed with the obvious scalar product. The Sobolev space of
weakly differentiable functions f ∈ L2,ν(R; H) with distributional derivative f ′ ∈ L2,ν(R; H)
is denoted by H1

ν(R; H). Next, we define

∂t,ν :
{

H1
ν(R; H) ⊆ L2,ν(R; H) → L2,ν(R; H)

f 7→ f ′.

The Fourier–Laplace transformation Lν ∈ Lb(L2,ν(R; H),L2(R; H)) is the unitary extension
of the mapping satisfying

(Lνf)(ξ) := 1√
2π

ˆ
R

e−iξt−νtf(t) dt (ξ ∈ R, f ∈ Cc(R; H)).

This unitary transformation provides the spectral representation for ∂t,ν . Indeed, defining
the multiplication-by-argument operator

m:
{ {

f ∈ L2(R;H)
∣∣ (ξ 7→ ξf(ξ)) ∈ L2(R; H)

}
⊆ L2(R; H) → L2(R; H),

f 7→ (ξ 7→ ξf(ξ)),
we obtain the equality

∂t,ν = L∗
ν(im + ν)Lν .

This equality serves as a means to define holomorphic functions of ∂t,ν . For this we
introduce the following notion.
Definition 2.1. Let M : dom(M) ⊆ C → Lb(H). We call M a material law, if

(i) dom(M) is open, M is holomorphic and
(ii) there exists ν ∈ R such that CRe>ν := {z ∈ C | Re z > ν} ⊆ dom(M) and

∥M∥∞,ν := sup
z∈CRe>ν

∥M(z)∥ < ∞.

We set sb(M) := inf{ν ∈ R | (ii) holds} and call it the abscissa of boundedness of M . The
set of all material laws with abscissa of boundedness lower than some µ ∈ R is denoted by
M(H, µ).

For a material law M ∈ M(H, ν), we furthermore define the corresponding material
law operator M(∂t,ν) ∈ Lb(L2,ν(R; H)) by

M(∂t,ν)f := L∗
νM(im + ν)Lνf (f ∈ L2,ν(R; H)),

where
(M(im + ν)ϕ)(t) := M(it+ ν)ϕ(t) (ϕ ∈ L2(R; H), a.e. t ∈ R). ♦

Next, we present the fundamental theorem for evolutionary equations, Picard’s well-
posedness theorem. For this, we do not use a different notation for a skew-selfadjoint
operator acting on H and its (canonical) skew-selfadjoint extension to L2,ν(R; H). It will
always be clear from the context, which operator is considered.
Theorem 2.2 (Picard’s Theorem, [STW22, Theorem 6.2.1]). Let A : dom(A) ⊆ H → H
be skew-selfadjoint, ν ∈ R, M ∈ M(H, ν). Assume there exists c > 0 such that

Re zM(z) ≥ c for all z ∈ CRe≥ν .

Then, the operator

Bν :
{

H1
ν(R; H) ∩ L2,ν(R; dom(A)) ⊆ L2,ν(R; H) → L2,ν(R; H),

U 7→ [∂t,νM(∂t,ν) +A]U,

is closable. The closure is continuously invertible, Sν := Bν
−1. Moreover, ∥Sν∥ ≤ 1/c.
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Remark 2.3. (i) There are additional consequences of the assumptions in Picard’s
Theorem that we will not need but are worth mentioning. For instance, Sν is
independent of the particular choice of ν. If µ ≥ ν and f ∈ L2,ν(R; H) ∩ L2,µ(R; H)
then Sνf = Sµf . Also, the solution operator Sν is causal; that is, for all f, g ∈
L2,ν(R; H) and a ∈ R, f = g on (−∞, a] implies Sνf = Sνg (−∞, a]. Furthermore,
we have the following regularity statement: if f ∈ H1

ν(R; H), then Sνf ∈ H1
ν(R;H) ∩

L2,ν(R; dom(A)).
(ii) The positive-definiteness condition on the material law implies that, for all z ∈ CRe≥ν ,

the operator (zM(z) + A) is continuously invertible on H with the norm of the
inverse bounded by 1/c. In fact, it is only this uniformly bounded invertibility that
is used to obtain the numerous conclusions. Thus, instead of the positive definiteness
condition, it suffices to assume that there exists c > 0 such that

sup
z∈CRe≥ν

∥(zM(z) +A)−1∥ ≤ 1/c.

Then, the same conclusions as in Picard’s Theorem (also the ones mentioned in
item (i)) hold.

(iii) As mentioned in item (ii), the proof of Picard’s Theorem hinges upon having
(zM(z) + A)−1 ∈ Lb(H) for z ∈ CRe≥ν . In fact, one shows that this defines a
material law with corresponding operator Sν . ♦

For d ∈ N and an open Ω ⊆ Rd, we define grad↾C∞
c

: C∞
c (Ω) ⊆ L2(Ω) → L2(Ω)d and

div↾C∞
c

: C∞
c (Ω)d ⊆ L2(Ω)d → L2(Ω) the usual way. We also get curl↾C∞

c
: C∞

c (Ω)3 ⊆
L2(Ω)3 → L2(Ω)3. As usual, we can weakly extend these unbounded operators to their
maximal domains, i.e., grad := −(div↾C∞

c
)∗, div := −(grad↾C∞

c
)∗ and curl := (curl↾C∞

c
)∗.

Adjoining again, we get the operators with zero boundary conditions
◦

grad := − div∗ =
grad↾C∞

c
,

◦
div := − grad∗ = div↾C∞

c
and

◦
curl := curl∗ = curl↾C∞

c
. Since all these extended

operators are closed, their domains are Hilbert spaces if endowed with the respective graph
product. Most prominently, we get the Sobolev spaces H1(Ω) and

◦
H1(Ω) stemming from

the domains of grad and
◦

grad respectively, and similarly, H(div,Ω),
◦
H(div,Ω), H(curl,Ω)

and
◦
H(curl,Ω).

Example 2.4 (Maxwell’s Equations). For Ω ⊆ R3 open, H := L2(Ω)3 × L2(Ω)3, c > 0
and ν0 > 0, let the bounded and measurable dielectric permittivity, magnetic permeability
and electric conductivity ϵ, µ, σ : Ω → R3×3 satisfy

∀x ∈ Ω : µ(x) = µ(x)∗ ≥ c and νϵ(x) + Reσ(x) = νϵ(x)∗ + Reσ(x) ≥ c

for all ν ≥ ν0. Maxwell’s equations for the electric and magnetic field, E and H, with
current j0 ∈ dom(∂t,ν) and perfect conductor boundary conditions read[

∂t,ν

(
ϵ 0
0 µ

)
+
(
σ 0
0 0

)
+
(

0 − curl
◦

curl 0

)](
E
H

)
=
(
j0
0

)
.

Note that all conditions of Theorem 2.2 are met. We emphasise that due to positive
parameter ν > 0, we ask for an implicit homogeneous initial condition at −∞. Classical
initial value problems can also be treated, see [STW22, Chapter 9]. ♦

3. Homogenisation Theory and Theorems

In this section, we shall add some more structural and less computational points to this
subject matter. In particular, we will recall the classical (local) homogenisation theory
from [MT97] and [Tar09], we will introduce the notion of nonlocal H-convergence (and,
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thus, the Schur topology) from [Wau18b] (generalised in [Wau25]), and we will refine the
(nonlocal) homogenisation result for evolutionary equations from [BSW24].

In Section 2, we have introduced div weakly on its maximal domain in L2(Ω)d, where
Ω ⊆ Rd open and d ∈ N. We will extend this operator canonically to div−1 : L2(Ω)d →
H−1(Ω), where H−1(Ω) is the dual space of

◦
H1(Ω), via div−1(φ)(u) := −⟨φ,

◦
gradu⟩L2(Ω)d

for all φ ∈ L2(Ω)d and u ∈
◦
H1(Ω). Clearly, div−1 is bounded and anti-linear.

3.1. Local H-Convergence. Classical PDE-homogenisation theory is tailored to the
sequence of unique solutions (un)n in

◦
H1(Ω), n ∈ N, of

− div−1 an

◦
gradun = f (1)

where, for some d ∈ N, Ω ⊆ Rd is bounded and open, f ∈ H−1(Ω), and (an)n∈N is a given
sequence of linear bounded operators on L2(Ω)d with Re an ≥ c for all n ∈ N and some
c > 0. In case that (un)n∈N at least weakly converges to some u ∈

◦
H1(Ω), one would like

to obtain an a ∈ Lb(L2(Ω)d) with Re a ≥ c̃ for some c̃ > 0 such that u solves

− div−1 a
◦

gradu = f , (2)
and one would like this a to be independent of f . At this point, we have to note two things.
Firstly, this convergence is apparently more a condition on the coefficient sequence (an)n∈N
than on the solutions (which clearly depend on f). Secondly, it turns out that neither
existence nor uniqueness of a limit in terms of (an)n∈N is guaranteed in this general setting.1
In the special case of multiplication (and thus local) operators an, a ∈ L∞(Ω)d×d, n ∈ N,
[MT97] and [Tar09] now provide the following theory.

Definition 3.1 ([Tar09, Definition 6.4]). Consider the set

M(α, β,Ω) :=
{
a ∈ L∞(Ω)d×d

∣∣Re a(x) ≥ α,Re a(x)−1 ≥ 1
β for x ∈ Ω a.e.

}
(3)

for some d ∈ N, Ω ⊆ Rd bounded and open, and for some 0 < α < β.
We call a sequence (an)n∈N from M(α, β,Ω) locally H-convergent to an a ∈ M(α, β,Ω)

if and only if for all f ∈ H−1(Ω) the sequence (un)n∈N of
◦
H1-solutions of (1) weakly

converges to the solution u ∈
◦
H1(Ω) of (2) in

◦
H1(Ω), and an

◦
gradun weakly converges to

a
◦

gradu in L2(Ω)d, i.e.,

un ⇀ u in
◦
H1(Ω) and an

◦
gradun ⇀ a

◦
gradu in L2(Ω)d. ♦

Theorem 3.2 ([Tar09, p. 82 (metric topology) and Theorem 6.5 (compact)]). For d ∈ N,
Ω ⊆ Rd bounded and open, and 0 < α < β, there exists a topology τ on M(α, β,Ω) that
induces local H-convergence and renders the space (M(α, β,Ω), τ) Hausdorff, compact, and
even metrisable.

In certain cases, we can compute the homogenisation limit explicitly.

Theorem 3.3 ([CD99, Theorem 5.12]). Let Ω ⊆ Rd be open and bounded for some d ∈ N
and a = (aij)d

i,j=1 ∈ M(α, β,Ω) given by bounded and measurable ℓ1-periodic functions
âij : R → R,

1Actually, existence follows by Theorem 3.2 if we restrict the coefficient sequence to the set (3) of
multiplication operators. This leads to the older concept of G-convergence (H-convergence implies G-
convergence) introduced by Sergio Spagnolo in the 1960s. Alternatively, Theorem 3.6 below can be
viewed as replacing the restriction to (3) by requiring mere boundedness of the sequence (an)n∈N, i.e., a
nonlocal generalisation. Uniqueness is only achievable in special cases since the solution u of (2) disregards
constant real skew-selfadjoint additive perturbations of a (cf. Lemma A.1). For an in-depth discussion see,
e.g., [Tar09, Chapter 6].
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where aij : Ω → R and aij(x) = âij(x1) for x = (x1, . . . , xd) ∈ Ω. For n ∈ N, we define
an(x) := a(nx) and the corresponding sequence (an)n∈N. Then for every f ∈ H−1(Ω), the
solution sequence (un)n∈N to the problems

− div−1 an

◦
gradun = f (4)

converges weakly to uhom in
◦
H1(Ω), where uhom is the solution of

− div−1 ahom
◦

graduhom = f ,
and the matrix-valued function ahom ∈ M(α, β,Ω) is given by

(ahom)11 = 1
m( 1

â11
)
,

(ahom)1j = (ahom)11m
( â1j

â11

)
, 2 ≤ j ≤ d

(ahom)i1 = (ahom)11m
( âi1

â11

)
, 2 ≤ i ≤ d

(ahom)ij = (ahom)11m
( âi1

â11

)
m
( â1j

â11

)
+ m

(
âij − âi1â1j

â11

)
, 2 ≤ i, j ≤ d,

where m(b) is the integral mean over b ∈ L1(0, ℓ1), i.e., m(b) := 1
ℓ1

´ ℓ1
0 b(z) dz. Additionally,

the sequence (an

◦
gradun)n∈N converges weakly to ahom

◦
graduhom in L2(Ω)d, i.e.,

an

◦
gradun ⇀ ahom

◦
graduhom in L2(Ω)d. (5)

All in all, this means (an)n∈N locally H-converges to ahom.

Remark 3.4. Note the following:
• The last claim (5) is not part of the original statement, but it is shown in the course

of proof, see [CD99, Proof of Thm. 5.10].
• Furthermore, [CD99] defines M(α, β,Ω) without the real part operator, since only

real vector spaces are treated. However, if a is an Rd×d-valued function, then both
approaches to M(α, β,Ω) coincide (theirs and ours), see Lemma A.2.

• The previous result is the periodic case of the more general [Tar09, Lemma 5.3], where
the sequence (an)n∈N depends on the first variable only, and the entries (an)ij satisfy
certain L∞-L1-weak-∗ convergence conditions (see [Tar09, (5.6)–(5.9)]) that, due to
Theorem A.3, exactly yield the above limit in the periodic case. ♦

3.2. Nonlocal H-Convergence. In [Wau18b], the desire to treat general (possibly non-
local) coefficients instead of only multiplication operators, and to treat a whole class of
(possibly time-dependent) systems at once led to the following operator-theoretic approach
to homogenisation.

For the rest of this section, let H be a separable Hilbert space that can be decomposed
orthogonally into two closed subspaces H = H0 ⊕ H1. Hence, any a ∈ Lb(H) can

equivalently be written as
(
a00 a01
a10 a11

)
where aij ∈ Lb(Hj ,Hi).

Definition 3.5 (cf. [Wau18b, Theorem 4.1]). Consider
M(H0,H1) := {a ∈ Lb(H) | a−1

00 ∈ Lb(H0) and a−1 ∈ Lb(H)}.
A sequence (an)n∈N from M(H0,H1) is said to nonlocally H-converge to an a ∈ M(H0,H1)
if and only if a−1

n,00, an,10a
−1
n,00, a−1

n,00an,01, and an,11 − an,10a
−1
n,00an,01 converge pointwise

weakly (i.e., with respect to the weak operator topology) to a−1
00 , a10a

−1
00 , a−1

00 a01, and
a11 − a10a

−1
00 a01 respectively. ♦
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Theorem 3.6 (cf. [Wau18b, Chapter 5]). There exists a topology τ(H0,H1) on M(H0,H1),
called nonlocal H-topology or Schur topology, that induces nonlocal H-convergence and
renders the space (M(H0,H1), τ(H0,H1)) Hausdorff. Furthermore, regard

M(γ,H0,H1) :=
{
a ∈ M(H0,H1)

∣∣∣∣ Re a00 ≥ γ00,Re a−1
00 ≥ 1

γ11
,

∥a10a
−1
00 ∥ ≤ γ10, ∥a−1

00 a01∥ ≤ γ01,

Re(a11 − a10a
−1
00 a01)−1 ≥ 1

γ11
,

Re(a11 − a10a
−1
00 a01) ≥ γ00

}
,

where γ =
(
γ00 γ01
γ10 γ11

)
∈ (0,∞)2×2. Then, (M(γ,H0,H1), τ(H0,H1)) is compact and

metrisable.

In the following, if the decomposition of H into H0 and H1 is clear from the context,
we will simply write M(γ) instead of M(γ,H0,H1). As one would expect, nonlocal
H-convergence reasonably generalises local H-convergence. For the matter of simplicity,
we will only treat topologically trivial domains (in 3D: simply connected with connected
complement). For the general case, see [Wau25].

Remark 3.7 (Helmholtz decomposition, [Wau18b, Examples 2.3 and 2.4]). For a bounded
simply connected weak Lipschitz domain Ω ⊆ R3 with connected complement and continu-
ous boundary, we have the following orthogonal decompositions into closed subspaces

L2(Ω)3 = ran(
◦

grad) ⊕ ran(curl) = ran(grad) ⊕ ran(
◦

curl),
where Ω∁ being connected implies the first decomposition, and Ω being simply connected
the second one. In other words, we have ran(grad) = ker(curl), ran(

◦
grad) = ker(

◦
curl),

ker(div) = ran(curl) and ker(
◦

div) = ran(
◦

curl). Furthermore, the Picard-Weber-Weck
selection theorem holds ([Pic84]): dom(div) ∩ dom(

◦
curl) and dom(

◦
div) ∩ dom(curl), both

endowed with the inner product ⟨·, ·⟩L2(Ω)3 + ⟨div ·,div ·⟩L2(Ω) + ⟨curl ·, curl ·⟩L2(Ω)3 , are
each compactly embedded into L2(Ω)3. ♦

Theorem 3.8 ([Wau18b, Theorem 5.11]). Let Ω ⊆ R3 be a bounded weak Lipschitz domain
with connected complement. For 0 < α < β, a sequence (an)n∈N from M(α, β,Ω) locally
H-converges to some a ∈ M(α, β,Ω) if and only if it τ(ran(

◦
grad), ran(curl))-converges to

a.

Note that the previous result can be extended to Ω ⊆ Rd for d > 3. The key is to find
the corresponding Helmholtz/Hodge decomposition, see, e.g., [Wau18a, Theorem 3.6 &
Theorem 2.2].

3.3. Homogenisation Theory for Evolutionary Equations. In the remaining section,
assume that H is a separable Hilbert space and A : dom(A) ⊆ H → H skew-selfadjoint.
Additionally, let the Hilbert space dom(A) ∩ (kerA)⊥ (with respect to ⟨·, ·⟩H + ⟨A·, A·⟩H)
be compactly embedded into H. This implies ker(A)⊥ = ranA (see, e.g., [tEGW19,
Lemma 4.1] or the FA-Toolbox in [PZ23]), i.e., H = H0 ⊕ H1 in the sense of Section 3.2
with the Hilbert spaces H0 := ker(A) and H1 := ran(A). Looking at the proof of [BSW24,
Lemma 6.4], we see that actually the following stronger statement was shown.

Lemma 3.9. Let γ ∈ (0,∞)2×2 and consider a sequence (Tn)n∈N from M(γ) that
τ(ker(A), ran(A))-converges to some T ∈ M(γ). Then, (Tn +A)−1, (T +A)−1 ∈ Lb(H),
for all n ∈ N, and for φ ∈ H,
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• the ker(A)-component of (Tn +A)−1φ weakly converges to (T +A)−1φ,
• the ran(A)-component of (Tn +A)−1φ converges to (T +A)−1φ.

Apparently, by (canonically) extending the orthogonal projections from H to L2,ν(R; H),
the decomposition of H can be lifted to

L2,ν(R; H) = L2,ν(R; ker(A)) ⊕ L2,ν(R; ran(A)),

where ν ∈ R is arbitrary.
Employing this and Lemma 3.9, we immediately obtain the following refinement of the

homogenisation theorem [BSW24, Theorem 6.5]:

Theorem 3.10. Consider ν0 > 0 and material laws Mn with CRe>ν0 ⊆ dom(Mn) for
n ∈ N. Let there be some c, d > 0 such that for all z ∈ CRe>ν0 we have Re zMn(z) ≥ c
and ∥Mn(z)∥ ≤ d. Then, Mn ∈ M(H, ν) for all n ∈ N and ν > ν0. Assume there exists
M : CRe>ν0 → M(ker(A), ran(A)) with ∥M(z)∥ ≤ d on CRe>ν0 . If (Mn)n∈N pointwise
τ(ker(A), ran(A))-converges to M on CRe>ν0 , then M ∈ M(H, ν) for all ν > ν0 as well
as Re zM(z) ≥ c on CRe>ν0 . Most importantly, for f ∈ L2,ν(R,H), ν > ν0, n ∈ N,
Sn,ν := [∂t,νMn(∂t,ν) +A]

−1
and Sν := [∂t,νM(∂t,ν) +A]

−1
,

• the L2,ν(R; ker(A))-component of Sn,νf weakly converges to Sνf ,
• the L2,ν(R; ran(A))-component of Sn,νf converges to Sνf .

The previous theorem will be a crucial tool to justify the convergence of the examples
in Section 5. In fact, by means of one analytic and several numerical examples we shall
see that the convergence statements seem to be optimal.

Remark 3.11. Consider the setting of Theorem 3.10. Whether L2,ν(R; ran(A)) is a maximal
(disregarding the trivial finite-dimensional extensions) subspace, on which (Sn,νf)n∈N
converges to Sνf in norm for each f ∈ L2,ν(R,H), remains an open question. ♦

4. Additional Properties of (Non-)Local H-Convergence

In this section, we will prove a few, mostly straightforward, properties of local and
nonlocal H-convergence that we will need in Section 5, and that only implicitly appear in
the literature.

4.1. Nonlocal H-Convergence of the Inverse Sequence. A frequent scenario one
is confronted with (and that also appears in Section 5) is knowing how to compute the
τ(H1,H0)-limit but rather needing the τ(H0,H1)-limit. The following theorem offers a
solution: invert the sequence, compute the limit, and then invert back. This observation
originated in [Wau25].

Theorem 4.1. For a sequence (an)n∈N in M(H0,H1), the sequence of inverses ((an)−1)n∈N
lies in M(H1,H0). Furthermore, τ(H0,H1)-convergence of (an)n∈N to an a ∈ M(H0,H1)
is equivalent to τ(H1,H0)-convergence of ((an)−1)n∈N to a−1.

Proof. By [Wau18b, Lemma 4.8], we obtain (an)−1 ∈ M(H1,H0) with the decomposition

(an)−1 =
(
a−1

n,00 + a−1
n,00an,01ãnan,10a

−1
n,00 −a−1

n,00an,01ãn

−ãnan,10a
−1
n,00 ãn

)
for n ∈ N, where ãn := (an,11 − an,10a

−1
n,00an,01)−1. The definition of the respective Schur

topologies now directly implies the statement. ❑
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4.2. A Pasting Theorem. In Section 5, we will also need a kind of a pasting property of
local H-convergence. That means we want to conclude local H-convergence on a domain
from local H-convergence on each of two disjoint subdomains that together span the domain
in a certain topological and measure theoretical sense. This is basically an immediate
corollary of [Tar09, Lemma 10.5].

Theorem 4.2. Consider d ∈ N, Ω ⊆ Rd bounded and open, 0 < α < β, a sequence
(an)n∈N in M(α, β,Ω), and some a ∈ M(α, β,Ω). If for almost every x ∈ Ω there exists
an open neighborhood ωx ⊆ Ω of x such that (an↾ωx

)n∈N (locally) H-converges to a↾ωx
in

M(α, β, ωx), then (an)n∈N (locally) H-converges to a in M(α, β,Ω).

Proof. By Theorem 3.2, every subsequence of (an)n∈N has another subsequence that
(locally) H-converges to some b ∈ M(α, β,Ω). From [Tar09, Lemma 10.5] and from the
assumptions, we infer that a and b coincide. As the initial subsequence was chosen
arbitrarily, this concludes the proof. ❑

4.3. Independence of Boundary Conditions. Another property that we will need in
Section 5 is a variant of Theorem 3.8 with different boundary conditions that was already
proposed in [Wau18b, Remark 5.12], see also [BSW24, Theorem 2.4]. It hinges upon the
independence of the homogeneous Dirichlet boundary conditions that were imposed in the
definition of local H-convergence (cf. Section 3.1). To be precise, the following concrete
realisation of [Tar09, Lemma 10.3] holds.

Lemma 4.3. Consider d ∈ N, Ω ⊆ Rd bounded, open and connected, and 0 < α < β.
Then, for a sequence (an)n∈N in M(α, β,Ω) and a ∈ M(α, β,Ω), the following statements
are equivalent:

(i) (an)n∈N locally H-converges to a.
(ii) For all f ∈ H1

⊥(Ω)′, where H1
⊥(Ω) := {v ∈ H1(Ω) |

´
Ω v = 0} (endowed with the

H1(Ω)-scalar product), the unique solutions un ∈ H1
⊥(Ω), n ∈ N, of

∀v ∈ H1
⊥(Ω): ⟨an gradun, grad v⟩L2(Ω)d = f(v) (6)

weakly H1
⊥(Ω)-converge to the unique solution u ∈ H1

⊥(Ω) of

∀v ∈ H1
⊥(Ω): ⟨a gradu, grad v⟩L2(Ω)d = f(v), (7)

and an gradun weakly L2(Ω)d-converges to a gradu.

Proof. First, the same construction that eventually proves metrisability in Theorem 3.2
also shows that the convergence in (ii) is induced by a Hausdorff topology on M(α, β,Ω).

Next, assume (i), and consider the solution sequence (un)n∈N from (6) for some fixed
f . Extract any subsequence, and use the same notation. By classical elliptic theory, this
sequence is bounded in H1(Ω) by the norm of f times a constant that only depends on α
and the shape of Ω. Thus, the sequence (an gradun)n∈N is bounded in L2(Ω)d by the same
bound times 1/β, and we obtain yet another subsequence, u ∈ H1(Ω), as well as q ∈ L2(Ω)d

such that un ⇀ u in H1(Ω), which also implies u ∈ H1
⊥(Ω), as well as an gradun ⇀ q in

L2(Ω)d. For w ∈
◦
H1(Ω), we can calculate

⟨an gradun, gradw⟩L2(Ω)d = f(w − wΩ),

where wΩ := |Ω|−1 ´
Ω w dx is the integral mean. Straightforward computations show

(w 7→ f(w − wΩ)) ∈ H−1(Ω). Therefore, we can apply [Tar09, Lemma 10.3] which
yields q = a gradu. It remains to verify (7), but this is an immediate consequence of
an gradun ⇀ a gradu in L2(Ω)d.
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So, the identity mapping is continuous from the compact local H-topology to the
Hausdorff topology that induces the convergence in (ii). Hence, these two topologies on
M(α, β,Ω) coincide. ❑

With this, [Wau18b, Remark 5.12] yields:

Theorem 4.4. Let Ω ⊆ R3 be a simply connected bounded weak Lipschitz domain. For
0 < α < β, a sequence (an)n∈N from M(α, β,Ω) locally H-converges to an a ∈ M(α, β,Ω)
if and only if it τ(ran(grad), ran(

◦
curl))-converges to a.

4.4. H-convergence in 2D. Finally, we will apply Theorem 3.8 in two dimensions in
Section 5. Fortunately, this easily turns out to work exactly as expected and is in fact very
similar to the 3D case.

Remark 4.5 (Helmholtz Decomposition in 2D). Let Ω ⊆ R2 be open and simply connected
with the segment property. Define J :=

( 0 −1
1 0

)
. Then, it is known that2

L2(Ω)2 = ran(
◦

grad) ⊕ ran(J grad) = ran(grad) ⊕ ran(J
◦

grad). (8)
Since this statement seems to be difficult to find (or follows from more involved statements
involving Betti numbers and differential forms, see, e.g., [DS52, Pic79]), we provide a short
argument here.

Clearly, we have (see also [Pau15, Appendix])

L2(Ω)2 = ran(
◦

grad) ⊕ ran(J grad) ⊕ HD = ran(grad) ⊕ ran(J
◦

grad) ⊕ HN,

where
HD := ker(div) ∩ ker(

◦
div(−J)), and HN := ker(

◦
div) ∩ ker(div(−J))

are the harmonic Dirichlet and Neumann fields in two spatial dimensions. Note that
dim HD = dim HN :

Indeed, for q ∈ L2(Ω)2, we have q ∈ HD if and only if Jq ∈ HN. Thus, in order to prove (8)
it remains to show HN = {0}. For this, let f ∈ HN. Note that without loss of generality,
we may assume that f attains values in R only. Then g(x+ iy) := f1(x, y) − if2(x, y) for all
(x, y) ∈ Ω ⊆ R2 ∼= C defines a complex-valued function with Re g = f1 and Im g = −f2. It
is not difficult to see that, locally as f ∈ HN, g satisfies the Cauchy–Riemann equations in
a distributional sense. In particular, Re g = f1 and Im g = −f2 are harmonic distributions
and, by Weyl’s lemma, f1, f2 ∈ C∞(Ω). In consequence, g is holomorphic. Since Ω is
simply connected, by Cauchy’s integral theorem, there exists a potential G such that
G′ = g. Then, consider F (x, y) := ReG(x+ iy) and compute for (x, y) ∈ Ω

∂xF (x, y) = ReG′(x+ iy) = Re g(x+ iy) = f1(x, y) and
∂yF (x, y) = Re iG′(x+ iy) = − Im g(x+ iy) = f2(x, y).

Next, as Ω has the segment property, [Agm10, Theorem 3.2(2)] applies to an approximating
sequence using the shift technique similar to the one considered in [Pic82, p. 170], and
since f ∈ L2(Ω)2, we infer that F ∈ dom(grad). By assumption, gradF = f ∈ ker(

◦
div).

In particular,
⟨gradF, gradF ⟩ = −⟨F,

◦
div gradF ⟩ = 0,

which implies that F is constant and, hence, f = 0 as desired.

2Recall that the ranges are closed: Indeed, boundedness and the segment property of Ω yield that
the Rellich–Kondrachov selection theorem holds (both H1(Ω) ↪→ L2(Ω) and

◦
H1(Ω) ↪→ L2(Ω) are compact

embeddings). Thus, the claim follows by a standard argument for grad and
◦

grad, see, e.g., again the
FA-Toolbox in [PZ23], and the fact that J is a topological isomorphism.
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As a consequence of the above decomposition, we also get ran(grad) = ker(div J),
ran(

◦
grad) = ker(

◦
div J), ker(div) = ran(J grad) and ker(

◦
div) = ran(J

◦
grad). ♦

With this, we get yet another variant of Theorem 3.8.

Theorem 4.6. Let Ω ⊆ R2 be open, bounded and simply connected satisfying the segment
property. For 0 < α < β, a sequence (an)n∈N from M(α, β,Ω) locally H-converges to an
a ∈ M(α, β,Ω) if and only if it τ(ran(

◦
grad), ran(J grad))-converges to a.

Proof. The short proof of [Wau18b, Theorem 5.11] only needs R3 to use the classical
Helmholtz decomposition. The underlying [Wau18b, Theorem 4.10] works on an ab-
stract Hilbert space level. Hence, using Remark 4.5, we can readily rewrite [Wau18b,
Theorem 5.11] for R2. ❑

5. Examples

In this section, we will present a range of homogenisation examples (and their respective
limits) that fall into the regime of Theorem 3.10. We focus on the pre-asymptotic
homogenisation problems first and provide the respective limits after that. All of them
can be written in the form (

∂t,νM0,n +M1,n +A
)
U = F , (9)

for M0,n,M1,n ∈ Lb(H), n ∈ N, and suitable ν > 0. In other words, the material laws
are of the form Mn(z) := M0,n + z−1M1,n for n ∈ N and z ∈ C \ {0} which readily
implies Mn ∈ M(H, ν) for n ∈ N and for all ν > 0. These examples will illustrate
different convergence phenomena corresponding to the respective different decompositions
H = H0 ⊕ H1 = ker(A) ⊕ ran(A).

We state the examples next.

5.1. The Examples. One of the standard situations of Theorem 3.10 is the case when
A = 0, i.e., an ODE, in which case one can choose H1 = {0} and H0 = H = ker(A). This
means only weak convergence of the solutions can be expected.

Example 5.1 (An ordinary differential equation). Consider
∂t,νun(t, x) + sin (2πnx)un(t, x) = f(t, x), (10)

where Ω := (0, 1), H := L2(Ω), and ν > 2.
Clearly, we have

∀h ∈ L2(Ω) : Re⟨h, zh⟩L2(Ω) + Re⟨h, sin(2πn·)h⟩L2(Ω) ≥ ∥h∥2
L2(Ω),

and
∀h ∈ L2(Ω) : ∥h+ z−1 sin(2πn·)h∥L2(Ω) ≤ 2∥h∥L2(Ω)

for Re z > 2 and n ∈ N.
Thus, we are in the setting of Theorem 3.10 with ν0 := 2. In particular, (10) is well-posed

(in the sense of Theorem 2.2 with A := 0) for each n ∈ N, ν > ν0, and f ∈ L2,ν(R; H), and
by [Wau16]

un(t, x) =
ˆ t

−∞
e−(t−s) sin(2πnx)f(s, x) ds (11)

gives the solution sequence explicitly. ♦

The other extreme case is H0 = {0}, meaning A is one-to-one and the Hilbert space
dom(A) compactly embeds into H1 = H = ran(A). Hence, we obtain strong convergence of
the solutions. In fact, a finite-dimensional kernel is already sufficient for strong convergence
on the whole space since the weak and strong operator topology coincide on finite-
dimensional spaces.
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In the following we model oscillations with the indicator function 1On
: R → {0, 1} of

the set
On :=

⋃
k∈Z

( 2k
2n ,

2k+1
2n

)
, n ∈ N,

see Figure 1. Note that 1On
(x) = 1O1(nx) for x ∈ R and n ∈ N.

Example 5.2 (Finite-dimensional kernel). This example appears in [FW18]. Let n ∈ N
and set

ϵn(x) := 1On
(x), σn(x) := 1 − 1On

(x).
We consider the following rough-coefficient PDE3[

∂t,ν

(
ϵn 0
0 1

)
+
(
σn 0
0 0

)
+
(

0 ∂#
∂# 0

)]
Un = F, (12)

where Ω := (0, 1), H := L2(Ω)2, ν > ε for an arbitrary ε > 0, A :=
(

0 ∂#
∂# 0

)
, and

Mn(z) :=
(

ϵn 0
0 1
)

+ z−1( σn 0
0 0
)

for n ∈ N and Re z > ε.
Obviously, Re zMn(z) ≥ min{1, ε} and ∥Mn(z)∥ ≤ max{1, 1/ε} hold for Re z > ε and

n ∈ N. Moreover, H1
#(0, 1) compactly embeds into L2(Ω), by the Rellich–Kondrachov

theorem.
Hence, we are in the setting of Theorem 3.10 with ν0 := ε, and H0 = ker(A) is the

one-dimensional space of constant functions in L2(Ω) times itself. In particular, (12) is
well-posed (in the sense of Theorem 2.2) for each n ∈ N, ν > ν0, and F ∈ L2,ν(R; H). ♦

x

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

Figure 1. Graph of 1On for n = 1

The intermediate case, meaning both ker(A) and ran(A) are infinite-dimensional, has
Maxwell’s equations as a prominent example. We will additionally provide some other
PDEs with such spatial derivative operators A.

Example 5.3 (Infinite-dimensional kernel and range). We provide several examples in
different spatial dimensions and with different spatial derivatives.

(i) The first example in one spatial dimension reads (1(−1,0) is the indicator function of
(−1, 0), ∂x stands for the weak derivative on L2(−1, 1) and ∗ denotes the L2-adjoint
operator)[
∂t,ν

(
1 0
0 1

)
︸ ︷︷ ︸

=:M0,n

+
(

sin (2πn·) 0
0 sin (2πn·)

)
︸ ︷︷ ︸

=:M1,n

+
(

0 ∂x1(−1,0)
−(∂x1(−1,0))∗ 0

)
︸ ︷︷ ︸

=:A

]
Un = F,

(13)
where Ω := (−1, 1), H := L2(Ω)2 and ν > 2.

3For C∞
# (0, 1) := {φ↾(0,1): φ ∈ C∞(R), φ(· + 1) = φ(·)}, we define ∂x↾C∞

#
: C∞

# (0, 1) ⊆ L2(0, 1) →
L2(0, 1) as the usual derivative. Weakly extending, we obtain ∂# := −(∂x↾C∞

#
)∗ and ∂# = −(∂#)∗ =

∂x↾C∞
#

with the domain as Hilbert space H1
#(0, 1).
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Note that the operator ∂x1(−1,0) on L2(−1, 1) can be decomposed in a block
operator by decomposing L2(−1, 1) into L2(−1, 0) ⊕ L2(0, 1). Because of the Sobolev
embedding theorem, the corresponding block operator is then

∂x1(−1,0) =
(
∂̊x,{0} 0

0 0

)
,

where ∂̊x,{0} is the derivative on L2(−1, 0) with domain {f ∈ H1(−1, 0) | f(0) = 0},
i.e., the product of ∂x and 1(−1,0) gives a “boundary” condition in the middle of the
interval. Using a direct computation and integration by parts, the L2-adjoint is then

−(∂x1(−1,0))∗ =
(

−(∂̊x,{0})∗ 0
0 0

)
=
(
∂̊x,{−1} 0

0 0

)
,

where ∂̊x,{−1} is the derivative on L2(−1, 0) with domain {f ∈ H1(−1, 0) | f(−1) = 0}.
This naturally induces a decomposition of L2(−1, 1)2 into

L2(−1, 0)2︸ ︷︷ ︸
=H1

⊕ L2(0, 1)2︸ ︷︷ ︸
=H0

,

since we easily obtain L2(−1, 0)2 = ranA and L2(0, 1)2 = kerA. Moreover, the
Rellich–Kondrachov theorem implies that dom(A) ∩ H1 compactly embeds into H.

Thus, similarly to Equation (10), we are in the setting of Theorem 3.10 with
ν0 := 2. In particular, (13) is well-posed (in the sense of Theorem 2.2) for each
n ∈ N, ν > ν0, and F ∈ L2,ν(R; H).

Going for two spatial dimensions we consider stratified coefficients, i.e., they oscillate only
in one direction. For that purpose, we extend 1On (without changing the notation) to
1On : R2 → {0, 1} via 1On(x, y) := 1On(x) for all x, y ∈ R.

(ii) For Ω := (−2, 2)2, Ω1 := (−1, 1)2 and its indicator function 1Ω1 and arbitrary
constants ϵ0, µ0 > 0, consider the problem given by ν > ε for an arbitrary ε > 0 and
the following operators on H := L2(Ω) ⊕ L2(Ω)2:

M0,n := 1Ω1

(
1 − 1On

0
0 1 + 1On

)
+ (1 − 1Ω1)

(
ϵ0 0
0 µ0

)
,

M1,n := 1Ω1

(
1On

0
0 0

)
, A :=

(
0 div
◦

grad 0

)
.

(14)

Note that the oscillating coefficient is only active on the subdomain Ω1. Thus, we
have a non-periodic anisotropic homogenisation problem.

Obviously, Re zMn(z) ≥ min{εϵ0, εµ0, 1, ε} and ∥Mn(z)∥ ≤ max{ϵ0, µ0, 2, 1/ε}
hold for n ∈ N and Re z > ε. By Remark 4.5, H decomposes into

H0 = kerA =
(

{0}
ran(J grad)

)
and H1 = ranA =

(
L2(Ω)

ran(
◦

grad)

)
. (15)

By the Rellich–Kondrachov theorem,
◦
H1(Ω) =

◦
H1(Ω)∩ran(div) =

◦
H1(Ω)∩ker(

◦
grad)⊥

compactly embeds into L2(Ω). Going to the adjoints, we easily infer that H(div,Ω) ∩
ran(

◦
grad) = H(div,Ω)∩ker(div)⊥ also compactly embeds into L2(Ω)2, so dom(A)∩H1

compactly embeds into H.
Alltogether, we are in the setting of Theorem 3.10 with ν0 := ε. In particular,

the PDE (9) arising from (14) is well-posed (in the sense of Theorem 2.2) for each
n ∈ N, ν > ν0, and F ∈ L2,ν(R; H).
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(iii) The same as (ii) with slightly different M0,n and M1,n:

M0,n := 1Ω1

(
1 + 1On

0
0 1 − 1On

)
+ (1 − 1Ω1)

(
ϵ0 0
0 µ0

)
,

M1,n := 1Ω1

(
0 0
0 1On

)
, A :=

(
0 div
◦

grad 0

)
.

In three dimensions, we also consider the stratified case, and we extend 1On
once more

(without changing the notation) to 1On : R3 → {0, 1} via 1On(x, y, z) := 1On(x) for all
x, y, z ∈ R.

(iv) The fourth and final example are Maxwell’s equations (cf. Example 2.4). For
Ω := (−2, 2)3, Ω1 := (−1, 1)3 and its indicator function 1Ω1 and arbitrary constants
ϵ, µ, σ, ϵ0, µ0 > 0, consider the problem given by ν > ε for an arbitrary ε > 0 and
the following operators on H := L2(Ω)3 ⊕ L2(Ω)3:

M0,n := 1Ω1

(
ϵ(1 − 1On) 0

0 µ(1 + 1On
)

)
+ (1 − 1Ω1)

(
ϵ0 0
0 µ0

)
,

M1,n := 1Ω1

(
σ1On 0

0 0

)
, A :=

(
0 − curl
◦

curl 0

)
.

(16)

For n ∈ N and Re z > ε, we have Re zMn(z) ≥ min(εϵ0, εµ0, σ, εϵ, εµ) and
∥Mn(z)∥ ≤ max(ϵ0, µ0, 2µ, σ/ε, ϵ). By Remark 3.7, the kernel and range of A yield
the following decomposition of H:

H0 =
(

ker(
◦

curl)
ker(curl)

)
=
(

ran(
◦

grad)
ran(grad)

)
and H1 =

(
ran(curl)
ran(

◦
curl)

)
. (17)

Moreover, we obtain that
◦
H(curl,Ω)∩ran(curl) =

◦
H(curl,Ω)∩ker(div) and H(curl,Ω)∩

ran(
◦

curl) = H(curl,Ω) ∩ ker(
◦

div) are each compactly embedded into L2(Ω)3 (Picard–
Weber–Weck selection theorem; see [Pic84]).

Therefore, we are in the setting of Theorem 3.10 with ν0 := ε. In particular, the
PDE (9) arising from (16) is well-posed (in the sense of Theorem 2.2) for each n ∈ N,
ν > ν0, and F ∈ L2,ν(R; H). ♦

5.2. Homogenisation limits of the examples. In this section we calculate the ho-
mogenisation limits of the previous examples.

Example 5.4 (An ordinary differential equation). For Example 5.1, the convergence of
material laws necessary for Theorem 3.10 boils down to finding an M : CRe>ν0 → Lb(H)
with ∥M(z)∥ ≤ 2 and M(z)−1 ∈ Lb(H) on CRe>ν0 such that Mn(z)−1 converges in the
weak operator topology to M(z)−1 for each z ∈ CRe>ν0 , where, for n ∈ N and z ∈ CRe>ν0 ,
the operator Mn(z) ∈ Lb(H) stands for the multiplication-with-(1+z−1 sin(2πn·)) operator.
Then, the well-posed (in the sense of Theorem 2.2 with A := 0) limit problem is given by

∂t,νM(∂t,ν)uhom(t, x) = f(t, x),

for each ν > ν0 and f ∈ L2,ν(R; H).
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By [Wau16], we have4

M(z) = 1 +
∞∑

j=1

(
−

∞∑
m=1

(2m)!
(2mm!)2 z

−2m

)j

(18)

for z ∈ CRe>ν0 .
Therefore, the homogenised problem reads

∂t,νu
hom(t, x) +

∞∑
j=1

∂t,ν

(
−

∞∑
m=1

(2m)!
(2mm!)2 ∂

−2m
t,ν

)j

uhom(t, x) = f(t, x),

for each ν > ν0 and f ∈ L2,ν(R; H). Moreover by [Wau16], the homogenised solution
explicitly reads

uhom(t, x) =
ˆ t

−∞
I0(t− s)f(s, x) ds,

where I0 is the modified Bessel function of first kind. Comparing this to (11) and consulting
Theorem 3.10, we conclude that un converges to uhom weakly but (due to the oscillation)
in general not strongly for each ν > ν0 and f ∈ L2,ν(R; H). ♦

Remark 5.5. For the treatment of homogenisation problems for ODEs we refer to the
classical [Tar89]. In this article nonlocal effects have been noticed after a homogenisation
process of a sequence of non-periodic ODEs. We refer to [Wau14, Wau12] for a thorough
positioning of the present operator-theoretic approach to the classical viewpoint by Tartar
and related works. We particulary refer to [Wau14, Rem. 3.8] for the relation to the
concept of Young-measures. ♦

Example 5.6 (Finite-dimensional kernel). For Example 5.2, we will manually calculate
the limit of the material laws that Theorem 3.10 asks for. The orthogonal projection
from L2(0, 1) onto the closed subspace of constant functions is given by the integral mean.
Recalling the definition of the nonlocal H-topology and considering (ϵn)n∈N first, we need
to find the limits of (

´ 1
0 ϵn(x) dx)−1,

´ 1
0 φ(x)ϵn(x) dx, and

´ 1
0 φ(x)ϵn(x)ψ(x) dx for all

φ,ψ ∈ L2(0, 1) with integral mean 0. By Theorem A.3 and since
´ 1

0 ϵ1(x) dx = 1/2, the
respective limits are 2, 0, and

´ 1
0 φ(x)(1/2)ψ(x) dx respectively. With that, one easily

proves ϵn → 1/2 in the nonlocal H-topology. Arguing similarly for (σn)n∈N, we obtain
the homogenised material law M(z) :=

( 1/2 0
0 1

)
+ z−1( 1/2 0

0 0

)
∈ M(ker(A), ran(A)) for

z ∈ CRe>ν0 .
Therefore, Theorem 3.10 yields the well-posed homogenised problem[

∂t,ν

( 1
2 0
0 1

)
+
( 1

2 0
0 0

)
+
(

0 ∂#
∂# 0

)]
Uhom = F,

and the solutions Un converge strongly to Uhom for each ν > ν0 and F ∈ L2,ν(R; H). ♦

Example 5.7 (Infinite-dimensional kernel and range). Let us look at the PDE-sequences
in Example 5.3 and compute their limits.

(i) Example 5.3 (i) is in some sense a concatenation of two problems. We have already
discussed that the decomposition of H into the range H1 and kernel H0 of A is given
by L2(−1, 1)2 = L2(−1, 0)2 ⊕ L2(0, 1)2. Hence, we can decompose U , F , A, etc.

4After some tedious but basic calculations, one gets that the operator norm of the double series is
strictly smaller than 1. Thus, one indeed obtains M(z), M(z)−1 ∈ Lb(H) with ∥M(z)∥ ≤ 2 on CRe>ν0 .

Strictly speaking, [Wau16] directly shows convergence of the solution operators. Convergence of the
corresponding material laws follows by compactness, see, e.g., [BSW24, Theorem 5.6 and Lemma 5.7], and
the unique correspondence between material laws and their respective operators.
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accordingly and obtain the following representation of the PDE for n ∈ N, ν > ν0
and F ∈ L2,ν(R; H)∂t,ν


(

1 0
0 1

)
0

0
(

1 0
0 1

)
+ sin(2πn·)


(

1 0
0 1

)
0

0
(

1 0
0 1

)


+


(

0 ∂̊x,{0}
∂̊x,{−1} 0

)
0

0
(

0 0
0 0

)

(Un,1

Un,2

)
=
(
F1
F2

)
.

We now manually calculate the homogenised limit of the material laws.
Because of the diagonal shape of the material law the nonlocal H-convergence is

decoupled. To be precise, we only have to deal with a−1
n,00 and an,11 (Note that we

have swapped the order of ranA and kerA in our decomposition, hence an,00 is in
the lower right corner and an,11 in the upper left).

The limiting process on H1 is a direct consequence of Theorem A.3 implying
an,11 = 1 + 1

z sin(2πn·) → 1 in the weak operator topology for every z ∈ CRe>ν0 .
Thus, on (−1, 0), we obtain the well-posed homogenised problem[

∂t,ν

(
1 0
0 1

)
+
(

0 ∂̊x,{0}
∂̊x,{−1} 0

)]
Uhom

1 = F1,

for each ν > ν0 and F1 ∈ L2,ν(R; H1).
On H0, we are in the setting of Example 5.1. Therefore, on (0, 1), we obtain from

Example 5.4 (omitting the system) the homogenised solution

Uhom
2 (t, x) =

ˆ t

0
I0(t− s)F2(s, x) ds,

for each ν > ν0 and F2 ∈ L2,ν(R; H0).
To sum up, the homogenised material law M(z) ∈ M(H0,H1) for z ∈ CRe>ν0

is given by
(

M11 0
0 M00(z)

)
, where M11(z) := ( 1 0

0 1 ) and M00(z) is (18) times ( 1 0
0 1 ).

Theorem 3.10 yields well-posedness of the corresponding homogenised problem[
∂t,ν

(
M11 0

0 M00(∂t,ν)

)
+A

](
Uhom

1
Uhom

2

)
= F ,

strong convergence of Un,1 to Uhom
1 and weak convergence of Un,2 to Uhom

2 for each
ν > ν0 and F ∈ L2,ν(R; H). Recall from Example 5.4 that in general Uhom

2 is indeed
only reached in a week sense.

(ii) In Example 5.3 (ii) the block operators were given with respect to the decomposition
L2(Ω) ⊕ L2(Ω)2. On Ω \ Ω1, the material law is constantly

(
ϵ0 0
0 µ0

)
.

The kerA⊕ ranA decomposition (15) lets us compute the nonlocal H-limit in the
first row manually. With Theorem A.3, we infer

1 − 1On
+ 1
z
1On

→ 1
2 + 1

z

1
2

for z ∈ CRe>ν0 in Lb(L2(Ω1)) in the weak operator topology. That implies

1Ω1

(
1 − 1On

+ 1
z
1On

)
+ (1 − 1Ω1)ϵ0 → 1Ω1

(
1
2 + 1

z

1
2

)
+ (1 − 1Ω1)ϵ0

for z ∈ CRe>ν0 in Lb(L2(Ω)) in the weak operator topology.
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The second row of (15) asks for the τ(ran(J grad), ran(
◦

grad))-limit of

1Ω1

(
1 + 1On

0
0 1 + 1On

)
+ (1 − 1Ω1)µ0.

We compute the τ(ran(
◦

grad), ran(J grad))-limit

1Ω1

(
(1 + 1On)−1 0

0 (1 + 1On
)−1

)
+ (1 − 1Ω1)µ−1

0

→ 1Ω1

( 2
3 0
0 3

4

)
+ (1 − 1Ω1)µ−1

0 ,

and via inverting the τ(ran(J grad), ran(
◦

grad))-limit

1Ω1

(
1 + 1On

0
0 1 + 1On

)
+ (1 − 1Ω1)µ0 → 1Ω1

( 3
2 0
0 4

3

)
+ (1 − 1Ω1)µ0,

using Theorem 4.1, Theorem 4.6, Theorem 4.2 and Theorem 3.3.
All in all, the homogenised material law M(z) ∈ M(H0,H1) for z ∈ CRe>ν0 is

given by M(z) := M0 + z−1M1, where

M0 := 1Ω1

 1
2 0

0
( 3

2 0
0 4

3

)+ (1 − 1Ω1)
(
ϵ0 0
0 µ0

)
, M1 := 1Ω1

( 1
2 0
0 0

)
.

Theorem 3.10 yields well-posedness of the homogenised problem(
∂t,νM0 +M1 +A

)
Uhom = F

with weak convergence of the L2,ν(R; ker(A))-component of the solution sequence
and strong convergence of the L2,ν(R; ran(A))-component of the solution sequence
for each ν > ν0 and F ∈ L2,ν(R; H).

(iii) For Example 5.3 (iii), we exactly repeat the ideas from (ii).
The first row of (15) results in computing

1Ω1(1 + 1On) + (1 − 1Ω1)ϵ0 → 1Ω1

3
2 + (1 − 1Ω1)ϵ0

in Lb(L2(Ω)) in the weak operator topology.
For the second row of (15), we have

1Ω1

(
1 − (1 − 1

z )1On

)−1
(

1 0
0 1

)
+ (1 − 1Ω1)µ−1

0

→ 1Ω1

(
2

1+ 1
z

0
0 1

2 (1 + z)

)
+ (1 − 1Ω1)µ−1

0

in τ(ran(
◦

grad), ran(J grad)) for z ∈ CRe>ν0 . Hence, the τ(ran(J grad), ran(
◦

grad))-
limit reads

1Ω1

( 1
2 + 1

z
1
2 0

0 2(1 + z)−1

)
+ (1 − 1Ω1)µ0

for z ∈ CRe>ν0 . If we substitute

2(1 + z)−1 = 1
z

(z + 1 − 1)2(1 + z)−1 = 1
z

(2 − 2(1 + z)−1),
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the homogenised material law M(z) ∈ M(H0,H1), z ∈ CRe>ν0 , is given by M(z) :=
M0 + z−1M1, where

M0 := 1Ω1

 3
2 0

0
( 1

2 0
0 0

)+ (1 − 1Ω1)
(
ϵ0 0
0 µ0

)
,

M1 := 1Ω1

0 0

0
( 1

2 0
0 2 − 2(1 + z)−1

) . (19)

Note that by the limit process, we obtained an operator with the memory term
(1 + z)−1 ≈ (1 + ∂t,ν)−1.

(iv) For Example 5.3 (iv), we have to consider the decomposition (17).
For the first row, we need to find the τ(ran(

◦
grad), ran(curl))-limit of

1Ω1

 (1−1On )ϵ+ 1
z 1On σ 0 0

0 (1−1On )ϵ+ 1
z 1On σ 0

0 0 (1−1On )ϵ+ 1
z 1On σ

+ (1 − 1Ω1)ϵ0

for z ∈ CRe>ν0 . Applying Theorem 3.8, Theorem 4.2 and Theorem 3.3, we obtain
the limit

1Ω1

 1
z 2(ϵ−1 1

z + σ−1)−1 0 0
0 1

2ϵ+ 1
z

1
2σ 0

0 0 1
2ϵ+ 1

z
1
2σ

+ (1 − 1Ω1)ϵ0

for z ∈ CRe>ν0 .
For the second row of (17), we need to find the τ(ran(grad), ran(

◦
curl))-limit of

1Ω1

(1 + 1On
)µ 0 0

0 (1 + 1On
)µ 0

0 0 (1 + 1On
)µ

+ (1 − 1Ω1)µ0.

Theorem 4.4, Theorem 4.2 and Theorem 3.3 yield the limit

1Ω1

 4
3µ 0 0
0 3

2µ 0
0 0 3

2µ

+ (1 − 1Ω1)µ0.

Thus, if we substitute

1
z

2
(
ϵ−1 1

z
+ σ−1

)−1
= 1
z

2ϵz(σ + zϵ)−1σ = 1
z

2(ϵz + σ − σ)(σ + zϵ)−1σ

= 1
z

2
(
1 − σ(σ + zϵ)−1)σ,
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the homogenised material law M(z) ∈ M(H0,H1) is given by M(z) := M0 + z−1M1,
where

M0 := 1Ω1


0 0 0
0 1

2ϵ 0 0
0 0 1

2ϵ 4
3µ 0 0

0 0 3
2µ 0

0 0 3
2µ



   + (1 − 1Ω1)
(
ϵ0 0
0 µ0

)
,

M1 := 1Ω1


2σ(1 − σ(σ + zϵ)−1) 0 0

0 σ
2 0

0 0 σ
2

 0

0 0


As in (iii), this material law has a memory term. This time, it is (σ + zϵ)−1 ≈
(σ + ∂t,νϵ)−1. Theorem 3.10 yields well-posedness of the homogenised problem(

∂t,νM0 +M1 +A
)
Uhom = F

with weak convergence of the L2,ν(R; ker(A))-component of the solution sequence
and strong convergence of the L2,ν(R; ran(A))-component of the solution sequence
for each ν > ν0 and F ∈ L2,ν(R; H). ♦

Remark 5.8. We refer to [Wau18b, Sec. 7] for a more in depth discussion of homogenisation
problems for Maxwell’s equations in relation to the operator-theoretic perspective provided
here; see, in particular [Wel01] or [Sus08] for other approaches. ♦

6. Numerical Simulations

This section is devoted to complement a numerical study for our theoretical findings
from the previous sections. The computations presented here will support our results
concerning strong and weak convergence. The simulations are carried out in SOFE, a
finite-element framework in Matlab and Octave, see github.com/SOFE-Developers/SOFE.

For the temporal dimension in the examples to come, we use a discontinuous Galerkin
method in time, whereas a continuous Galerkin method is applied for the spatial directions.
The details of this method tailored for evolutionary equations are provided in [FTW19];
we briefly summarise the essential parts next. For a fixed T > 0 and the corresponding
time interval [0, T ], consider a partition 0 = t0 < · · · < tK = T for some K ∈ N and set
Im := (tm−1, tm] for 1 ≤ m ≤ K. For U , a piecewise polynomial discontinuous space of
degree 1 in time corresponding to the partition of [0, T ] and an A-conforming piecewise
polynomial space of degree 1 in space corresponding to the spatial Hilbert space H, the
method is now given by: Find U ∈ U such that for all m ∈ {1, . . . ,K} and Φ ∈ U

Qm [(∂tM0 +M1 +A)U,Φ]ρ + ⟨M0JUKm−1,Φ+
m−1⟩H

= Qm [F,Φ]ρ + ⟨M0U0,Φ(0+)⟩H.
(20)

Here, Qm [a, b]ρ := Qm [⟨a, b⟩H] is the weighted right-sided Gauß–Radau quadrature rule
with the property

Qm [p] =
ˆ

Im

p(t)e−2ρ(t−tm−1) dt for all p ∈ P2(Im), 5
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i.e., it approximates the exponentially weighted scalar product in space-time. Furthermore,
we denote by

JUKm−1 :=
{
U(tm−1+) − U(tm−1−), m ∈ {2, . . . ,K}
U(t0+), m = 1,

the jump of U at tm−1 and set Φ+
m−1 := Φ(tm−1+).

We replace M0, M1 and U in (20) by M0,n, M1,n and Un, respectively, for the non-limit
case.

For convenience, we restricted our attention to finite intervals as time-horizon instead
of R that was used to model the temporal scale in our theoretical sections.

6.1. Continuation of Example 5.1. We consider the sequence of equations (n ∈ N)
∂tun(t, x) + sin (2πnx)un(t, x) = f(t, x)

in the domain [0, 2] × [0, 1]. Asking for initial zero conditions, we find the solution of the
homogenised problem

uhom(t, x) =
ˆ t

0
I0(t− s)f(s, x) ds,

where I0 is the modified Bessel function of first kind (see Example 5.4 and [Wau16]).
For our numerical experiment we choose f(t, x) = 1 in [0, 2] × [0, 1]. Figure 2 shows the

(a) Solutions of Example 5.1 for n ∈ {2, 4, 8, 1024}

(b) Solution of the homgenisa-
tion limit of Example 5.1

Figure 2. Solutions of Example 5.1 for n ∈ {2, 4, 8, 1024} and for the
homogenised problem

solutions of Example 5.1 for different values of n. We observe that doubling n doubles the
number of waves in the solution. Thus, we have a shrinking effect of a periodic function in
x-direction. In contrast to that, the last plot shows uhom, the solution of the homogenised
problem.

This visualises weak but the lack of strong convergence. Unfortunately, we cannot
compute the following quantity for all v ∈ L2(Ω)

|⟨un − uhom, v⟩L2 |.

5P2(Im) denotes the set of all polynomials on Im of degree smaller than or equal to 2.
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Thus we use the following sample of example functions
v ∈

{
(t, x) 7→ 1, (t, x) 7→ x, (t, x) 7→ x2, (t, x) 7→ sin(πx), (t, x) 7→ t

}
.

The first and last function are constant in space, while all but the last function are constant
in time.

Figure 3 shows the results of these scalar products. The value of the homogenised

2 4 6 8 10 12 14 1610−7

10−4

10−1

n

|⟨ũn − uhom, 1⟩L2 |
|⟨ũn − uhom, x⟩L2 |
|⟨ũn − uhom, x2⟩L2 |
|⟨ũn − uhom, sin(πx)⟩L2 |
|⟨ũn − uhom, t⟩L2 |
O
(
n−1)

O
(
n−2)

102 10310−11

10−6

10−1

K

20 40 80 160
N

Figure 3. Results investigating weak convergence for Example 5.1

problem was calculated using MAPLE and the given formula for uhom. For the numerical
simulation we used a fixed equidistant mesh with N = 10 · n cells in the spatial direction
and K = 64 cells in the time direction in the upper plot. We do observe, that the functions
v being constant in space give a constant result, while we have results of order O

(
n−1)

for v(t, x) = x and v(t, x) = x2. For v(t, x) = sin(πx), we observe an initial second order
convergence O

(
n−2) but the graph stagnates at a certain value. The reason for this

behaviour lies in the approximation of un. In fact, Figure 3 does not show ⟨un −uhom, v⟩L2

but rather
⟨ũn − uhom, v⟩L2 = ⟨ũn − un, v⟩L2 + ⟨un − uhom, v⟩L2

replacing un by a numerical approximation ũn using (20). In order to investigate the
effect of this numerical approximation, we fixed n = 1 for the lower plots in Figure 3
and varied the mesh in time with K ∈ {64, 128, 256, 512, 1024, 2048} and in space with
N ∈ {20, 40, 80, 160}, respectively. We observe a reduction for v = 1 and v(t, x) = t,
when refining in time, but none for refining in space. This indicates, that the accuracy is
limited by the approximation errors in time, which are of order 10−6 in this example.

These plots underpin the weak convergence un ⇀ uhom, and even suggest vaguely a rate
of order n−1. If true in general, this would complement quantitative findings for strong
convergence for evolutionary equations (cf. [CEW24, FW18]).

6.2. Continuation of Example 5.3 (i). We consider the sequence of equations (n ∈ N)[
∂t

(
1 0
0 1

)
+
(

sin (2πnx) 0
0 sin (2πnx)

)
+
(

0 ∂x1[−1,0]
−(∂x1[−1,0])∗ 0

)](
un

vn

)
=
(

sin(2πt)
x− 1

2

)



HOMOGENISATION FOR MAXWELL AND FRIENDS 22

in [0, 2] × [−1, 1]. Figure 4 shows un in the upper and vn in the lower subplots for

Figure 4. Solutions of Example 5.3 (i) for n ∈ {2, 4, 8, 1024} from top
left to bottom right.

different n ∈ N. As expected, they suggest strong convergence on the spatial [0, 1]-part
and weak convergence on the [−1, 0]-part. In order to investigate this further, we use a
numerical solution (ũhom, ṽhom) := (ũn, ṽn) by setting n = 213, as well as mesh parameters
N = 40n = 327 680, K = 28 = 256, and we increase the degrees of the piecewise
polynomials to 3 in space and 2 in time in (20).

For the numerical simulations, we again vary n and chose K = 26, N = 40 · n and
polynomial degrees 2 in space and 1 in time. Figure 5 shows the results of the simulations
for u in the upper and v in the lower graphs. Subject to (small) approximation errors
elaborated on in the previous example, both components of the solution weakly converge.
The plots suggest convergence of order O

(
n−1) for either component.

6.3. Continuation of Example 5.3 (ii). We consider the sequence of equations (n ∈ N)

(∂tM0,n +M1,n +A)Un =
(

sin(2πt)
0

)
with a final time horizon T = 2.

Again, we want to confirm the convergence behaviour of Un = (un, vn) and its compo-
nents. Our theoretical finding predicts strong convergence for un and weak convergence
for vn. For the numerical method (20), we use piecewise polynomials of degree 2 in space
and one in time that are continuous in space – and therefore H1-conforming – for the first
component. For the second component, we use Raviart–Thomas-elements RT1 of degree
1 in space and 1 in time – these are H(div)-conforming. As mesh parameter, we choose
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Figure 5. Results investigating weak convergence for Example 5.3 (i)

Figure 6. Plots of the first component of the solution of Example 5.3 (ii)
u8 (top) and uhom (bottom) for t ∈ {0.25, 0.5, 0.75, 1.0} (left to right)

K = 26 and a tensor product mesh in space consisting of a piecewise equidistant mesh
with meshsize 1/(4n) in [−1, 1] and 1/n outside for the x-direction and an equidistant
mesh with 80 cells in the y-direction. We fix the mesh in y-direction as the effects are
anticipated to occur only in x-direction. Thus, the number of cells in total is 10 · n · 80.
Note that the spatial mesh resolves the stratified structure of the coefficients.

For t ∈ {0.25, 0.5, 0.75, 1.0}, Figure 6 shows plots of the first component of u8 of U8
and uhom of Uhom. Figure 7 investigates the convergence in the classical L2-norm, and
also weak convergence. We observe convergence of order O

(
n−1) for the L2-norm of the

first component, but a stagnation in the norm-convergence of the second component and
consequently of the weighted norm. Still, the second component converges weakly. Again,
the graphs suggest weak convergence of order O

(
n−1).
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Figure 7. Results investigating convergence for Example 5.3 (ii)

6.4. Continuation of Example 5.3 (iii). We once again consider the sequence of
equations (n ∈ N)

(∂tM0,n +M1,n +A)Un =
(

sin(2πt)
0

)
with a final time horizon T = 2. A direct approach incorporating the non-local operator in
M1 (see (19)) necessitates the inclusion of history terms as right-hand data while evaluating
the time steps. This is potentially numerically cumbersome. Fortunately, we can deal with
it differently:

Let us define an intrinsic variable w with w(t, x) = 0 for t ≤ 0 by
(1 + ∂t)−1v2 = w ⇔ v2 = (1 + ∂t)w ⇔ ∂tw + w − v2 = 0.

With this we rewrite the homogenised equation of Example 5.7 (iii) as

(∂tM̂0 + M̂1 + Â)Ûhom = F̂ , (21)

where Ûhom := (uhom, vhom, whom)T, F̂ := (f, g, 0)T for F = (f, g)T and

M̂0 := 1Ω1


3
2 0 0

0
( 1

2 0
0 0

)
0

0 0 2

+ (1 − 1Ω1)

ϵ0 0 0
0 µ0 0
0 0 0

 ,

M̂1 := 1Ω1


0 0 0

0
( 1

2 0
0 2

) (
0

−2

)
0
(
0 −2

)
2

+ (1 − 1Ω1)

0 0 0
0 0 0
0 0 1

 ,

Â :=

 0 div 0
◦

grad 0 0
0 0 0

 .

We added the equation (1 − 1Ω1)whom = 0 in order to define whom outside Ω1. We can
easily verify that (21) falls under the regime of Theorem 2.2. This formulation of the
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Figure 8. Plots of the first component of the solution U8 of Exam-
ple 5.3 (iii) (top), the first (middle) and third component (bottom) of
Ûhom of (21) for t ∈ {0.25, 0.5, 0.75, 1.0} (left to right)

homogenised problem does not contain memory terms and the standard method (20)
developed in [FTW19] applies, if we choose an appropriate function space for the third
component and set homogeneous initial conditions. As compatibility in space is not needed,
discontinuous, piecewise polynomial finite elements of order one less than for the first
component are possible. All in all, numerical costs are higher compared to the direct
approach, but the implementation is easier.

For t ∈ {0.25, 0.5, 0.75, 1.0}, Figure 8 shows plots of the first component of U8 and of
Uhom. In addition, the pictures in the bottom row exemplify the behaviour of the intrinsic
variable whom, i.e., the memory term, which apparently may not be neglected.

Figure 9 shows the convergence results of the numerical simulations. In the computation
of Ũn using (20), we used a piecewise polynomials of one degree higher than in the
previous calculations, because the numerical solution was still very oscillatory using
quadratic elements for ũn. Using higher order finite element methods can provide a natural
stabilisation that reduces the oscillations, see e.g., [BR94], and we can observe first order
convergence in the L2-norm of un to uhom in the upper graph of Figure 9. As in the
previous example, vn does not converge strongly in the L2-norm to vhom, but weakly as
depicted in the lower graph.

6.5. Continuation of Example 5.3 (iv). We once again consider the sequence of
equations (n ∈ N)

(∂tM0,n +M1,n +A)Un =
(

sin(2πt)
0

)
with a final time horizon T = 2. According to Example 5.7 (iv) its homogenised limit has
a memory term. In the same way as in the previous example, we can introduce an intrinsic
variable v = σε(σ + ε∂t)−1E1 and rewrite the system in the form

(∂tM̂0 + M̂1 + Â)Ûhom = F̂ , (22)
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Figure 9. Results investigating convergence for Example 5.3 (iii) and
(21)

where Ûhom = (Ehom, Hhom, vhom)T, F̂ = (J,K, 0)T for F = (J,K)T and

M̂0 = 1Ω1



0 0 0
0 1

2ϵ 0 0 0
0 0 1

2ϵ 4
3µ 0 0

0 0 3
2µ 0 0

0 0 3
2µ

0 0 2ϵ



   + (1 − 1Ω1)

ϵ0 0 0
0 µ0 0
0 0 0

 ,

M̂1 = 1Ω1


2σ 0 0 −2σ
0 1

2σ 0 0 0
0 0 1

2σ 0
0 0 0

−2σ 0 0 0 2σ


   
( ) + (1 − 1Ω1)

0 0 0
0 0 0
0 0 1

 ,

Â =

 0 − curl 0
◦

curl 0 0
0 0 0

 .

Once again, we have added the equation (1 − 1Ω1)vhom = 0 in order to define vhom

everywhere, and, once again, Theorem 2.2 renders (22) uniquely solvable. For its numerical
simulation, we observe the curse of dimensions and cannot use as large numbers of n in
(20) as for the previous problems. Again, we use a reference solution with a fine mesh
instead of a given exact solution to the homogenised problem. Just to give an impression
of its size: its number of degrees of freedom is 7 millions, 9 millions and 12 millions for
the three respective components. For the stratified problem, the finest resolution had 31
millions and 40 millions degrees of freedom in its two components. The values for the
differences are given in Figure 10. Both components suggest a convergence in n to the
solution of the homogenised problem, however, with an order less than 1. Whether or not
this behaviour can be confirmed will be further investigated looking at weak convergence.
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100
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∥En − Ehom∥L2

∥Hn −Hhom∥L2

O
(
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Figure 10. Computed errors for the full 3D Maxwell example (22).

Even though we took the following small sample of test functions

v1(t,x) =

1
0
0

 , v2(t,x) =

0
1
0

 , v3(t,x) =

0
0
1

 ,

v4(t,x) =

sin(πx)
0
0

 , v5(t,x) =

 0
sin(πy)

0

 , v6(t,x) =

 0
0

sin(πz)

 ,

v7(t,x) =

xy0
0

 , v8(t,x) =

 0
y2 + z

0

 , v9(t,x) =

 0
0
xyz

 ,

a similar convergence behaviour cannot be confirmed as Figure 11 shows (the results

2 8 32

10−4

10−2

n

|⟨En − Ehom, v1⟩L2 |
|⟨En − Ehom, v2⟩L2 |
|⟨En − Ehom, v3⟩L2 |
|⟨En − Ehom, v4⟩L2 |
|⟨En − Ehom, v5⟩L2 |
|⟨En − Ehom, v6⟩L2 |
|⟨En − Ehom, v7⟩L2 |
|⟨En − Ehom, v8⟩L2 |
|⟨En − Ehom, v9⟩L2 |
O
(
n−1)

Figure 11. Investigation of probable weak convergence of the full 3D
Maxwell example (22).

for Hn are similar). We are probably still far away from the convergent regime, but at
the same time at the end of our computational possibilities. Although our theoretical
findings assert that the numbers will go down eventually, this did not happen numerically
for n ≤ 32.

7. Conclusion

We have applied an abstract continuous dependence result to homogenisation problems
for ordinary differential equations as well as partial differential equations of potentially
mixed type. Further theoretical insight led to norm-convergence statements, where only
weak convergence was explicitly known. Numerical findings support these abstract results.
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Appendix A.

Lemma A.1. For d ∈ N, an open Ω ⊆ Rd, and a skew-selfadjoint C ∈ Rd×d,

⟨C
◦

gradu,
◦

grad v⟩L2(Ω)d = 0

holds for all u, v ∈
◦
H1(Ω).

Proof. Clearly, we only have to prove the claim for u, v ∈ C∞
c (Ω). In that case integration

by parts yields (C = (cij)1≤j,k≤d)

⟨C
◦

gradu,
◦

grad v⟩L2(Ω)d =
ˆ

Ω

d∑
j=1

d∑
k=1

cjk∂ku∂jv dx = −
ˆ

Ω
u

d∑
j=1

d∑
k=1

cjk∂k∂jv dx (23)

The skew-selfadjointness and Schwarz’s theorem imply
cjk∂k∂jv = −ckj∂k∂jv = −ckj∂j∂kv

for 1 ≤ j, k ≤ d. With that, we can immediately deduce that (23) vanishes. ❑

Lemma A.2. Let a ∈ Rd×d. Then(
∀x ∈ Rd : ⟨ax, x⟩Rd ≥ α∥x∥2

Rd

)
⇔

(
∀z ∈ Cd : Re⟨az, z⟩Cd ≥ α∥z∥2

Cd

)
Proof. Clearly the implication “⇐” is true. Hence, let z = x+ iy ∈ Cd, where x, y ∈ Rd.
Then
Re⟨az, z⟩Cd = Re

(
⟨ax, x⟩Cd + ⟨ax, iy⟩Cd + ⟨aiy, x⟩Cd + ⟨aiy, iy⟩Cd

)
= ⟨ax, x⟩Rd + ⟨ay, y⟩Rd

≥ α(∥x∥2
Rd + ∥y∥2

Rd) = α∥z∥2
Cd . ❑

Theorem A.3. For d ∈ N, consider f ∈ L∞(Rd) with f(· + k) = f for all k ∈ Zd.
Furthermore, let Ω ⊆ Rd be measurable with non-zero measure. Then, the sequence of
bounded multiplication operators (f(n·))n∈N in Lb(L2(Ω)) converges to

´
(0,1)d f(x) dx in

the weak operator topology.

Proof. See, e.g., [STW22, Theorem 13.2.4]. ❑
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