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Abstract. Considering evolutionary equations in the sense of Picard, we
identify a certain topology for material laws rendering the solution operator
continuous if considered as a mapping from the material laws into the set

of bounded linear operators, where the latter are endowed with the weak
operator topology. The topology is a topology of vector-valued holomorphic
functions and provides a lift of the previously introduced nonlocal H-topology

to particular holomorphic functions. The main area of applications are nonlocal
homogenisation results for coupled systems of time-dependent partial differential
equations. A continuous dependence result for a nonlocal model for cell

migration is also provided.

1. Introduction

Evolutionary Equations in the sense of Picard provide a unified Hilbert space
framework to address well-posedness, regularity, long-time behaviour and other
qualitative as well as quantitative properties of predominantly time-dependent partial
differential equations. The origins date back to the seminal papers [Pic09, PM11];
several examples can be found in [PMTW20]. We particularly refer to the monograph
[STW22] for a self-contained round-up of the theory. In the linear and autonomous
case, evolutionary equations take the form

(∂tM(∂t) +A)U = F,

formulated in some space-time Hilbert space of functions R → H, where H is a
Hilbert space modelling the spatial dependence. F is a given right-hand side, U is the
unknown, A is a skew-selfadjoint linear operator, containing the spatial derivatives,
and ∂t is an operator-realisation of the time-derivative. The main conceptual
difference to other more traditional approaches of addressing time-dependent partial
differential equations is the material law operator

M(∂t),

which in turn is a bounded, operator-valued holomorphic function M defined on a
certain right-half plane of the complex numbers applied to the time-derivative in
a sense of a functional calculus. As the name suggests, the material law operator
encodes the underlying material properties, i.e., the constitutive relations and their
corresponding material coefficients. As a consequence, the complexity of the material
is not contained in A but rather inM(∂t). This has certain advantages. For instance,
domain issues or interface phenomena can be more aptly dealt with in the framework
of evolutionary equations. Since the material properties are encoded in M(∂t), it is
of no surprise that homogenisation problems can be reformulated in the framework

Date: September 15, 2023.
2020 Mathematics Subject Classification. 32C18, 35B27, 74Q10, 78M40.
Key words and phrases. Homogenisation, H-convergences, nonlocal H-convergence, Evolutionary

equations, piezo-electricity.

1

https://orcid.org/0009-0004-4203-5874
https://orcid.org/0000-0002-3096-4818
https://orcid.org/0000-0003-4498-3574


2 A. BUCHINGER, N. SKREPEK, AND M. WAURICK

of evolutionary equations. The main question for these problems is: given a sequence
of material laws (Mn)n does there exist a material law M such that

(∂tMn(∂t) +A)−1 → (∂tM(∂t) +A)−1

in a suitable (operator) topology as n→ ∞. In this general situation, it is possible
to answer the question in the affirmative, see [BEW]. Indeed, based on a result for
(abstract) Friedrichs systems [BV14, BEW23], one can show that such a material
law M exists if the above convergence is assumed in the weak operator topology,
arguably a very weak assumption. In applications, this result might not be precise
enough for the identification of M .

Asking more of the operator A, we will define a topology on the set of material
laws such that if Mn →M in this topology, then the solution operators converge
in the weak operator topology. Since it is possible to show that suitably bounded
material laws are compact under this topology, one can also recover a special case
of the main result in [BEW] in this case. However, the upshot of the present article
is the identification of the topology. The topology introduced is an appropriate
generalisation of the Schur topology or nonlocal H-topology as introduced in [Wau22].
Since, in applications, this topology is the precise operator-theoretic description
of the topology induced by H-convergence (see [Tar09, MT97] for H-convergence
and [Wau18] for its connections to the nonlocal case) known homogenisation results
can be used to find the limit of Mn and, immediately, homogenisation results for
time-dependent problems can be obtained. Moreover, note that, in a certain way, the
compactness result of the present article can also be viewed as a variant of [Tar09,
Lemma 10.10] as it asserts that (nonlocal) H-convergence preserves holomorphic
dependence on a parameter in the limit.

The idea of finding an appropriate topology on the set of operator-valued holo-
morphic functions to describe homogenisation problems goes back to the PhD-Thesis
[Wau11]. It has since then been applied to ordinary differential equations (with
infinite-dimensional state spaces) [Wau12, Wau14a], to partial differential equations
[Wau13, Wau14b], or to systems of partial differential equations [Wau16b]. The
main assumptions imposed on A were either A = 0, A being invertible with compact
resolvent or, more generally, dom(A)∩ker(A)⊥ being compactly embedded in H. An
even more general assumption on A was treated in [Wau16b] with severe technical
challenges and seemingly undue restrictions on the admissible set of material laws.
Here, we may entirely drop all these additional assumptions on the material law
imposed in [Wau16b] and thus provide the recently most general form of continuous
dependence results for solution operators of evolutionary equations depending on
their material laws. We emphasise that this theorem also supersedes the findings
for the autonomous case in [Wau16a]. The present result is also easier to apply
compared to previous versions. The approach particularly works for systems of
partial differential equations and nonlocal material laws.

We quickly outline how the paper is organised. In Section 2 we briefly recall the
concept of nonlocal H-convergence and discuss its connection to the classical notion
of H-convergence. The concept of evolutionary equations is introduced in Section 3.
In this section, the notion of material laws and material law operators is properly
defined and the fundamental result – Picard’s theorem – is recalled. Section 4
describes the topology of compact convergence for operator-valued holomorphic
functions with respect to the weak operator topology. An analogue of the Banach-
Alaoglu theorem (Corollary 4.7) is presented and proved in a comprehensive manner
filling some details missing in the (sketch) proofs in [Wau14b, Theorem 4.3] or
[Wau12, Theorem 3.4]. The developed results are used to define the desired topology
that characterises nonlocal H-convergence for material laws in Section 5, where
we also establish a compactness result of said topology. The main theorem of the
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present contribution is contained in Section 6, where we provide the continuity
statement for the solution operator as a mapping from material laws taking values
in the bounded linear operators in space-time endowed with the weak operator
topology. Section 7 is devoted to two examples: one is about a nonlocal model for
cell migration and the other one is concerned with a (nonlocal) homogenisation
problem for (scalar) piezo-electricity. We conclude our findings in Section 8 and
recall some known results in the Appendix A.

All scalar products considered are linear in the first component and antilinear in
the second.

2. Nonlocal H-Convergence

The present section is devoted to summarise the rationale introduced in [Wau18],
exemplified in [NW22], and further studied in [Wau22]. More precisely, we let H
be a Hilbert space and let H0 ⊆ H be a closed subspace; H1 := H⊥

0 . Then, any
bounded linear operator M ∈ Lb(H) can be represented as a 2-by-2 operator matrix

M =

(
M00 M01

M10 M11

)
,

where Mij ∈ Lb(Hj ,Hi), i, j ∈ {0, 1} (cf. Lemma A.2). We define

M(H0,H1) :=
{
M ∈ Lb(H)

∣∣M−1
00 ∈ Lb(H0),M

−1 ∈ Lb(H)
}

M(α) :=

{
M ∈ M(H0,H1)

∣∣∣∣ ReM00 ≥ α00,ReM
−1
00 ≥ 1

α11
,

∥M10M
−1
00 ∥ ≤ α10, ∥M−1

00 M01∥ ≤ α01,

Re(M11 −M10M
−1
00 M01)

−1 ≥ 1

α11
,

Re(M11 −M10M
−1
00 M01) ≥ α00

}
,

where α = (αij)i,j∈{0,1} ∈ (0,∞)2×2. In applications, see [Wau18, NW22, Wau22],
Example 2.3 or Section 7.2 below, the decomposition assumed for H is drawn from
the Helmholtz decomposition. This then leads to an appropriate generalisation
of H-convergence (or G-convergence) to a general operator-theoretic and possibly
but not necessarily nonlocal setting (see Theorem 2.4). The definition of nonlocal
H-convergence reads as follows.

Definition 2.1. The nonlocal H-topology or Schur topology, τ(H0,H1), onM(H0,H1)
is given as the initial topology given by the mappings

M(H0,H1) ∋M 7→M−1
00 ∈ Lw

b (H0)

M(H0,H1) ∋M 7→M10M
−1
00 ∈ Lw

b (H0,H1)

M(H0,H1) ∋M 7→M−1
00 M01 ∈ Lw

b (H1,H0)

M(H0,H1) ∋M 7→M11 −M10M
−1
00 M01 ∈ Lw

b (H1),

where Lw
b (X ,Y) denotes the space Lb(X ,Y) endowed with the weak operator

topology. ♥

For later use and illustrational purposes, we quickly provide a sufficient condition
for convergence in the topology just introduced. The main tool for the proof is a
modification of the proof of [STW22, Prop. 13.1.4] (see also Lemma A.10).

Lemma 2.2. Let (Mn)n∈N be a sequence in M(α) that converges to M ∈ Lb(H)
in the strong operator topology. Then, M ∈ M(α) and (Mn)n∈N converges to M in
τ(H0,H1).
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Proof. First, note that the Pythagorean theorem implies Mn,00φ → M00φ and
Mn,10φ → M10φ for all φ ∈ H0, as well as Mn,01ψ → M01ψ and Mn,11ψ → M11ψ
for all ψ ∈ H1.

Since Mn ∈ M(α) holds, we have ReMn,00 ≥ α00 for n ∈ N. Together with
Mn,00φ→M00φ for φ ∈ H0, this shows

ReM00 ≥ α00.

Considering Lemma A.8, we infer that M00 is boundedly invertible and that the
sequence (M−1

n,00)n∈N is uniformly bounded in the operator norm. Hence, we can
apply Lemma A.10 to prove

M−1
n,00φ→M−1

00 φ

for all φ ∈ H0. We also know that ReM−1
n,00 ≥ 1/α11 for all n ∈ N, which now

implies
ReM−1

00 ≥ 1/α11.

Addition and multiplication of operators are sequentially continuous w.r.t. the
strong operator topology. Thus, we immediately obtain

Mn,10M
−1
n,00φ→M10M

−1
00 φ,

M−1
n,00Mn,01ψ →M−1

00 M01ψ and

Mn,11ψ −Mn,10M
−1
n,00Mn,01ψ →M11ψ −M10M

−1
00 M01ψ

for all φ ∈ H0 and all ψ ∈ H1. Once again, Lemma A.8 and Lemma A.10 yield

Re(M11 −M10M
−1
00 M01) ≥ α00 and (1)

Re(M11 −M10M
−1
00 M01)

−1 ≥ 1/α11.

Hence, Lemma A.8 even allows us to explicitly write down the inverse of M ,
which we will omit here (cf., however, Lemma 6.3). This means M−1 ∈ Lb(H).

Clearly, operator norm balls are closed in the strong operator topology. Hence,
we lastly infer

∥M10M
−1
00 ∥ ≤ α10 and ∥M−1

00 M01∥ ≤ α01. ❑

The reason for having introduced the nonlocal H-topology is the consideration
of homogenisation problems in an operator-theoretic setting. For this, we quickly
recall a standard situation for choices of H0 and H1, respectively.

Example 2.3. Let Ω ⊆ R3 a bounded weak Lipschitz domain with continuous
boundary. Then,

g0 := {gradu |u ∈ H1
0(Ω)},

c := {curlE |E ∈ L2(Ω)
3, curlE ∈ L2(Ω)

3},
g := {gradu |u ∈ H1(Ω)}, and

c0 := {curlE | ∃(En)n ∈ C∞
c (Ω)3 : En → E ∈ L2(Ω)

3, curlEn → curlE ∈ L2(Ω)
3}

are closed subspaces of L2(Ω)
3. Indeed, see [PZ20] for the FA-toolbox establishing

closed range results based on selection theorems (see also [tEGW19, Lemma 4.1] for
the technique) and [BPS16, Pic84] for the Picard–Weber–Weck selection theorem
needed.

Then, the orthogonal decompositions

L2(Ω)
3 = g0 ⊕ c⊕HD(Ω) = g⊕ c0 ⊕HN (Ω),

hold, see, e.g., [PW22], where HD(Ω) and HN (Ω) are finite-dimensional subspaces,
whose dimensions can be found to be the number of bounded connected components
and the number of handles respectively, see [Pic82, PW22] for the details. ♦
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One of the main results of [Wau18] is the identification of the nonlocal H-topology
as the precise topology describing homogenisation problems. For this, we introduce
for Ω ⊆ R3 open and 0 < α < β

M(α, β; Ω) :=
{
a ∈ L∞(Ω)3×3

∣∣Re a(x) ≥ α,Re a(x)−1 ≥ 1/β (a.e. x ∈ Ω)
}
.

Next, we can identify M(α, β; Ω) as a subspace of Lb(L2(Ω)
3) and, thus, endow

it with the trace topology induced by the nonlocal H-topology subject to the
decompositions exemplified in Example 2.3. This straightforwardly works for Ω
being topologically trivial ; that is, for HD(Ω) = HN (Ω) = {0}. For topologically
non-trivial domains, the situation is more involved. This is dealt with in [Wau22,
Section 5]. The main result of [Wau18] shows that nonlocal H-convergence indeed
generalises H-convergence appropriately and reads as follows.

Theorem 2.4. Let Ω ⊆ R3 be a bounded weak Lipschitz domain with continuous
boundary. Additionally, assume Ω to be topologically trivial. Let 0 < α < β
and (an)n in M(α, β; Ω), a ∈ Lb(L2(Ω)

3×3). Then, the following conditions are
equivalent:

(i) a ∈M(α, β; Ω) and (an)n H-converges to a; that is, for all f ∈ H−1(Ω) and
un ∈ H1

0(Ω) satisfying

⟨an gradun, gradφ⟩ = f(φ) (φ ∈ H1
0(Ω)),

we have un ⇀ u ∈ H1
0(Ω) and an gradun ⇀ a gradu ∈ L2(Ω)

3, where

⟨a gradu, gradφ⟩ = f(φ) (φ ∈ H1
0(Ω));

(ii) (an)n converges to a in τ(g0, c);

(iii) (an)n converges to a in τ(g, c0).

3. Evolutionary Equations

In this section, we briefly summarise the concept of evolutionary equations as
introduced by Picard, see [Pic09]; we particularly refer to [STW22] for a recent
monograph on the subject matter. For ν > 0 and a Hilbert space H we define

L2,ν(R;H) :=

{
f ∈ L1,loc(R;H)

∣∣∣∣ ∫
R
∥f(s)∥2H exp(−2νs) ds <∞

}
.

The distributional derivative, ∂t, realised as an operator in L2,ν(R;H) endowed with
the maximal domain is continuously invertible, with explicit inverse given by

∂−1
t f(t) =

∫ t

−∞
f(s) ds (f ∈ L2,ν(R;H)).

We have ∥∂t∥Lb(L2,ν(R;H)) ≤ 1/ν. The (unitary) Fourier-Laplace transformation,
Lν : L2,ν(R;H) → L2(R;H) provides an explicit spectral theorem for ∂t. Indeed,
using m to denote the multiplication-by-argument operator with maximal domain
in L2(R;H), we have

∂t = L∗
ν(im + ν)Lν ,

where, for compactly supported, continuous φ : R → H,

Lνφ(ξ) =
1√
2π

∫
R
e−(iξ+ν)sφ(s) ds (ξ ∈ R).

The spectral representation for ∂t gives rise to a functional calculus. It is enough to
consider bounded, holomorphic functions on some right-half planes of C. This leads
us to define the notion of material laws and corresponding material law operators:
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Definition 3.1. We call M : dom(M) ⊆ C → Lb(H) material law, if dom(M) is
open, M is holomorphic and if there exists ν0 > 0 such that CRe>ν0 ⊆ dom(M)
with

sup
z∈CRe>ν0

∥M(z)∥ <∞.

The infimum over all such ν0 is denoted by sb(M), the abscissa of boundedness.
If M is a material law and ν > sb(M), we define M(∂t) ∈ Lb(L2,ν(R;H)), the
(corresponding) material law operator, via

M(∂t) := L∗
νM(im + ν)Lν ,

where for φ ∈ L2(R;H) we put

(M(im + ν)φ)(ξ) :=M(iξ + ν)φ(ξ) (a.e. ξ ∈ R). ♥

The well-posedness theorem for evolutionary equations reads as follows. It is ap-
plicable to both classical examples like heat and Maxwell’s equations or non-standard
ones like time-nonlocal examples from elasticity theory, mixed type equations or
equations with coefficients that are nonlocal in space. A closed and densely defined
operator in H can be (canonically) lifted to L2,ν(R;H) by pointwise application;
this (abstract) multiplication operator will be denoted by the same name. Note
that if the initial operator is skew-selfadjoint, so is the lifted one.

Theorem 3.2 (Picard’s Theorem, see, e.g., [STW22, Theorem 6.2.1]). Let ν >
0, H a Hilbert space, A : dom(A) ⊆ H → H a skew-selfadjoint operator. Let
M : dom(M) ⊆ C → Lb(H) be a material law with ν > sb(M). If, there exists
c > 0 such that for all z ∈ CRe>ν we have

Re zM(z) ≥ c.

Then, the operator sum

(∂tM(∂t) +A) : dom(∂tM(∂t)) ∩ dom(A) ⊆ L2,ν(R;H) → L2,ν(R;H)

is closable. Its closure is continuously invertible with

∥∂tM(∂t) +A
−1

∥ ≤ 1
c .

Moreover, S := ∂tM(∂t) +A
−1

is the material law operator corresponding to the
material law

z 7→ (zM(z) +A)−1,

S is causal; that is,

∀a ∈ R : 1(−∞,a)S1(−∞,a) = 1(−∞,a)S;
and, if f ∈ dom(∂t), then Sf ∈ dom(∂t) ∩ dom(A) ⊆ dom(∂tM(∂t)) ∩ dom(A).

4. Compactness in the Locally Uniform Weak Operator Topology

In this section we consider the space of holomorphic functions that map into the
space of bounded operators between two Hilbert spaces. We endow this space with
an initial topology that is motivated by the weak operator topology. The new aspect
is that we additionally have holomorphic dependence on a complex parameter.

Lemma 4.1. Let U ⊆ C be open and let X , Y be Hilbert spaces. We regard
Hol(U,Lb(X ,Y)) and Hol(U,Sesb(X ,Y)), where Lb(X ,Y) is endowed with the op-
erator norm and the bounded sesquilinear forms Sesb(X ,Y) are endowed with the
sesquilinear norm, i.e., ∥σ∥ := sup∥φ∥=1,∥ψ∥=1|σ(φ,ψ)| for σ ∈ Sesb(X ,Y). Then,
the mapping

G :

{
Hol(U,Lb(X ,Y)) → Hol(U,Sesb(X ,Y)),

f 7→ z 7→ ⟨f(z)·, ·⟩Y .
(2)
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is bijective and linear.

Proof. It is well-known that mapping an operator to the corresponding sesquilinear
form is a linear and isometric bijection from Lb(X ,Y) to Sesb(X ,Y). Hence, G is a
linear bijection from Lb(X ,Y)U to Sesb(X ,Y)U .

Let f ∈ Hol(U,Lb(X ,Y)). Then the complex derivative f ′ exists. Thus,

lim
w→z

∥∥∥∥G(f)(z)−G(f)(w)

z − w
−G(f ′)(z)

∥∥∥∥
Sesb(X ,Y)

= lim
w→z

∥∥∥∥G(f)(z)−G(f)(w)−G(f ′)(z)(z − w)

z − w

∥∥∥∥
Sesb(X ,Y)

= lim
w→z

∥∥∥∥G(f(z)− f(w)− f ′(z)(z − w)

z − w

)∥∥∥∥
Sesb(X ,Y)

= lim
w→z

∥∥∥∥f(z)− f(w)

z − w
− f ′(z)

∥∥∥∥
Lb(X ,Y)

= 0,

which implies G(f) ∈ Hol(U,Sesb(X ,Y)) with G(f)′(z) = G(f ′)(z). For σ ∈
Hol(U,Sesb(X ,Y)) we can analogously prove G−1(σ) ∈ Hol(U,Lb(X ,Y)) with
G−1(σ)′(z) = G−1(σ′)(z). ❑

Definition 4.2. Let U ⊆ C be an open set and X , Y Hilbert spaces. For every
φ ∈ X and ψ ∈ Y we define (cf. Remark A.1)

Λφ,ψ :

{
Hol(U,Lb(X ,Y)) → Hol(U,C),

f 7→ ⟨f(·)φ,ψ⟩Y ,
and

Λ̃φ,ψ :

{
Hol(U,Sesb(X ,Y)) → Hol(U,C),

σ 7→ σ(·)(φ,ψ).
Moreover, we define the locally uniform weak operator topology on Hol(U,Lb(X ,Y))
as the initial topology w.r.t. the mappings Λφ,ψ for φ ∈ X and ψ ∈ Y and denote it
by TΛ. Analogously, we denote the initial topology on Hol(U,Sesb(X ,Y)) w.r.t. the

mappings Λ̃φ,ψ for all φ ∈ X and ψ ∈ Y by TΛ̃. ♥

Remark 4.3. The mappings Λφ,ψ are linear and
⋂

kerΛφ,ψ = {0}. Therefore,
the corresponding initial topology TΛ is Hausdorff and makes Hol(U,Lb(X ,Y)) a
topological vector space. ♦

Lemma 4.4. Let G : Hol(U,Lb(X ,Y)) → Hol(U,Sesb(X ,Y)) be the linear bijection
from (2). Then G : (Hol(U,Lb(X ,Y)), TΛ) → (Hol(U,Sesb(X ,Y)), TΛ̃) is a linear
homeomorphism.

Hol(U,C)

Hol(U,Lb(X ,Y))

...

Hol(U,Sesb(X ,Y))

Hol(U,C)

G

Λφ,ψ

Λ
ζ,η

G−1

Λ̃ζ,η

Λ̃φ
,ψ

Figure 1. Initial topology on Hol(U,Lb(X ,Y)) and Hol(U,Sesb(X ,Y))
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Proof. By definition of G, Λφ,ψ and Λ̃φ,ψ we can immediately see that Λ̃φ,ψ ◦G =

Λφ,ψ and since G is invertible we also have Λ̃φ,ψ = Λφ,ψ ◦G−1. Hence, the diagram
in Figure 1 commutes. Since initial topologies are transitive, we conclude that G is
a homeomorphism. ❑

Lemma 4.5. A function σ : U → Sesb(X ,Y) is holomorphic if and only if σ(·)(φ,ψ)
is holomorphic for all φ ∈ X and ψ ∈ Y.

Proof. In view of Lemma 4.1 and Theorem A.7, it suffices to prove that a set of
operators B ⊆ Lb(X ,Y) is bounded (w.r.t. the operator norm) if and only if

∀φ ∈ X∀ψ ∈ Y : sup
A∈B

|⟨Aφ,ψ⟩Y | <∞. (3)

Obviously, boundedness of B implies (3).
Conversely, we can keep φ ∈ X fixed and write ιAφ ∈ Lb(Y,C) for the functional

with Riesz representation Aφ ∈ Y, i.e., ψ 7→ ⟨ψ,Aφ⟩Y . Then, (3) and the uniform
boundedness principle yield

∀ψ ∈ Y : sup
A∈B

|ιAφ(ψ)| <∞ =⇒ sup
A∈B

∥Aφ∥Y <∞.

Since this holds true for every φ ∈ X , another iteration of the uniform boundedness
principle shows that B is bounded. ❑

Similarly to Banach-Alaoglu’s theorem (for the weak operator topology) we show
that

K := {σ ∈ Hol(U,Sesb(X ,Y)) | ∀z ∈ U : ∥σ(z)∥ ≤ 1}
(the analogue of the closed ball in our setting) is compact.

Theorem 4.6. K is a TΛ̃-compact subset of Hol(U,Sesb(X ,Y)). If both X and Y
are separable, then (K, TΛ̃) is metrisable.

Hol(U,C)

Hol(U,Sesb(X ,Y))
∏
φ,ψ Hol(U,C) ...

Hol(U,C)

ιΠ

Λ̃φ,ψ

Λ̃ζ,η

πζ,η

πφ,ψ

Figure 2. Initial topology on Hol(U,Sesb(X ,Y))

Proof. We define the following mappings

ιΠ :


Hol(U,Sesb(X ,Y)) →

∏
(φ,ψ)∈X×Y

Hol(U,C),

σ 7→
(
σ(·)(φ,ψ)

)
(φ,ψ)∈X×Y ,

and

πζ,η :


∏

(φ,ψ)∈X×Y

Hol(U,C) → Hol(U,C),

(
f(·)(φ,ψ)

)
(φ,ψ)∈X×Y 7→ f(·)(ζ, η).

We can immediately see that Λ̃φ,ψ = πφ,ψ ◦ ιΠ. Hence, the diagram in Figure 2
is commutative. If we endow

∏
(φ,ψ) Hol(U,C) with the product topology, i.e., the
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initial topology w.r.t. the πζ,η and ιΠ(Hol(U,Sesb(X ,Y))) ⊆
∏

(φ,ψ) Hol(U,C) with
the trace topology, the transitivity of initial topologies and the commutativity of
the diagram imply that ιΠ is a homeomorphism onto its range.

Therefore, K is compact in Hol(U,Sesb(X ,Y)), if and only if ιΠ(K) is compact
in

∏
(φ,ψ) Hol(U,C).

First, we show that ιΠ
(
Hol(U,Sesb(X ,Y))

)
is closed in

∏
(φ,ψ) Hol(U,C): Let

(σi)i∈I be a net in Hol(U,Sesb(X ,Y)) such that (ιΠσi)i∈I converges to
f ∈

∏
(φ,ψ) Hol(U,C) (w.r.t. the product topology). The sesquilinearity of the

σi exactly means

σi(·)(φ1 + αφ2, ψ1 + βψ2)

= σi(·)(φ1, ψ1) + ασi(·)(φ2, ψ1) + βσi(·)(φ1, ψ2) + αβσi(·)(φ2, ψ2)

or equivalently

πφ1+αφ2,ψ1+βψ2
ιΠσi = πφ1,ψ1

ιΠσi + απφ2,ψ1
ιΠσi + βπφ1,ψ2

ιΠσi + αβπφ2,ψ2
ιΠσi

for all φ1, φ2 ∈ X , ψ1, ψ2 ∈ Y and α, β ∈ C. By continuity of the projec-
tions πζ,η we conclude that the last identity also holds if we replace ιΠσi by
its limit f , i.e., f(z) is sesquilinear for all z ∈ U . Therefore, Lemma 4.5 implies
that ι−1

Π f ∈ Hol(U,Sesb(X ,Y)) exists. Hence, ιΠ
(
Hol(U,Sesb(X ,Y))

)
is closed in∏

(φ,ψ) Hol(U,C).
It is straightforward to show

ιΠ(K) =
∏

(φ,ψ)∈X×Y

Hol(U,B∥φ∥X ∥ψ∥Y (0)) ∩ ιΠ
(
Hol(U,Sesb(X ,Y))

)
.

Note that by Corollary A.6 Hol(U,B∥φ∥∥ψ∥(0)) is compact for every φ ∈ X and

ψ ∈ Y . By Tychonoff’s theorem
∏

(φ,ψ) Hol(U,B∥φ∥∥ψ∥(0)) is compact and therefore

ιΠ(K) is compact as the intersection of a compact and a closed set. This finally
implies the compactness of K.

In the separable case, let X ⊆ X and Y ⊆ Y be countable and dense. Then, we
replace ∏

(φ,ψ)∈X×Y

Hol(U,C) with
∏

(φ,ψ)∈X×Y

Hol(U,C)

in the definition of ιΠ, and we only consider πζ,η and Λ̃φ,ψ with ζ ∈ X and η ∈ Y
in Figure 2. This gives rise to a new topology Tℵ0 on Hol(U,Sesb(X ,Y)). Since two
bounded sesquilinear forms that coincide on X × Y also coincide on X × Y , we still
have that ιΠ is a homeomorphism onto its range w.r.t. Tℵ0

. Thus,
∏

(φ,ψ) Hol(U,C)
being metrisable as the countable product of metrisable spaces (cf. Remark A.1)
implies that (Hol(U,Sesb(X ,Y)), Tℵ0) is metrisable. The identity operator

id : (K, TΛ̃) → (K, Tℵ0
)

clearly is continuous and bijective. Moreover, we have just shown that its domain is
compact and that its codomain is metrisable and hence Hausdorff. Therefore, id is
a homeomorphism implying that (K, TΛ̃) is metrisable. ❑

Lemma 4.4 now immediately yields:

Corollary 4.7. The set R := {f ∈ Hol(U,Lb(X ,Y)) | ∀z ∈ U : ∥f(z)∥ ≤ 1} is a
TΛ-compact subset of Hol(U,Lb(X ,Y)). If both X and Y are separable, then (R, TΛ)
is metrisable.
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5. The Parameterised Nonlocal H-Topology

We now come to the main part of this paper, the introduction and discussion of
the parameterised nonlocal H-topology or parametrised Schur topology

From now on, we regard a Hilbert space H that can be orthogonally decomposed
into two closed subspaces

H = H0 ⊕H1,

and an open subset U of C. Furthermore, let α ∈ (0,∞)2×2 be the matrix

α =

(
α00 α01

α10 α11

)
.

We regard the following space of holomorphic functions

M(U) := {M ∈ Hol(U,Lb(H)) | ∀z ∈ U :M(z) ∈ M(H0,H1)}. (4)

Similarly to [Wau22, Sec. 5], we will introduce the topology on M(U) as an initial
topology w.r.t. the “projections” onto the components of the Schur complement and
expect to obtain analogous properties. Instead of the weak operator topology we
will use the locally uniform weak operator topology, see Definition 4.2. To wit, we
regard the following “projections”

Λ00 :

{
M(U) → Hol(U,Lb(H0))

M 7→ M00(·)−1 (5a)

Λ01 :

{
M(U) → Hol(U,Lb(H1,H0))

M 7→ M00(·)−1M01
(5b)

Λ10 :

{
M(U) → Hol(U,Lb(H0,H1))

M 7→ M10M00(·)−1 (5c)

Λ11 :

{
M(U) → Hol(U,Lb(H1))

M 7→ M11 −M10M00(·)−1M01
(5d)

Note that these mappings are well-defined by the definition ofM(U) and Lemmas A.2,
A.3 and A.4.

Definition 5.1. Let M(U) be the set defined in (4) and Λ00, Λ01, Λ10, Λ11 the
mappings defined in (5). Then we define the parameterised nonlocal H-topology or
parameterised Schur topology, τHol(H0,H1), as the initial topology on M(U) w.r.t.
the mappings Λ00, Λ01, Λ10, Λ11, where the codomains are each endowed with the
corresponding locally uniform weak operator topology TΛ (Definition 4.2). ♥

Remark 5.2. Comparing Definition 2.1 and Definition 5.1, we can deduce that if a net
(Mi)i∈I in M(U) τHol(H0,H1)-converges to M ∈ M(U), then for each z ∈ U the net
(Mi(z))i∈I in M(H0,H1) converges to M(z) ∈ M(H0,H1) w.r.t. τ(H0,H1). ♦

Remark 5.3. Apparently, we cannot expect a statement similar to Remark 4.3 to
hold. Neither is M(U) a vector space, nor are the mappings Λ00, Λ01, Λ10, Λ11

linear. Just considering Λ00 and the fact that in general 1/z+1/w ̸= 1/(z+w) holds
for z, w ∈ C, we see that addition is not even continuous when staying within M(U).
Scalar multiplication however is continuous as a mapping from C \ {0} ×M(U) to
M(U) as one can show using nets and the definition of TΛ. Moreover, Λ00, Λ01, Λ10,
Λ11 separate points, i.e., M(U) is Hausdorff. ♦

We now regard the space

M(U,α) := {f ∈ M(U) | ∀z ∈ U : f(z) ∈ M(α)}

equipped with the trace topology of (M(U), τHol(H0,H1)) and the spaces
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Hol(U,Lb(H0))

Hol(U,Lb(H1,H0))

M(U)

Hol(U,Lb(H0,H1))

Hol(U,Lb(H1))

Λ00

Λ01

Λ10

Λ11

Figure 3. Initial topology on M(U)

A(U,α00, α11) :=

{
A ∈ Hol(U,Lb(H0))

∣∣∣∣ ∀z ∈ U : ReA(z)−1 ≥ α00,ReA(z) ≥
1

α11

}
,

B(U,α01) :=

{
B ∈ Hol(U,Lb(H0,H1))

∣∣∣∣∀z ∈ U : ∥B(z)∥ ≤ α01

}
,

C(U,α10) :=

{
C ∈ Hol(U,Lb(H1,H0))

∣∣∣∣∀z ∈ U : ∥C(z)∥ ≤ α10

}
,

D(U,α00, α11) :=

{
D ∈ Hol(U,Lb(H1))

∣∣∣∣ ∀z ∈ U : ReD(z) ≥ α00,ReD(z)−1 ≥ 1

α11

}
equipped with the traces of the respective locally uniform weak operator topology.

Remark 5.4. Let Λ00, Λ01, Λ10 and Λ11 be the mappings from (5). Then their
following restrictions to M(U,α) are well-defined and continuous:

Λ00 :

{
M(U,α) → A(U,α00, α11)

M 7→ M00(·)−1

Λ01 :

{
M(U,α) → B(U,α01)

M 7→ M00(·)−1M01

Λ10 :

{
M(U,α) → C(U,α10)

M 7→ M10M00(·)−1

Λ11 :

{
M(U,α) → D(U,α00, α11)

M 7→ M11 −M10M00(·)−1M01

In fact, they even induce the topology on M(U,α) as their initial topology (the
diagram in Figure 4 is commutative and initial topologies are transitive). ♦

Lemma 5.5. A(U,α00, α11), B(U,α01), C(U,α10) and D(U,α00, α11) are compact.
If H is separable, then these sets are metrisable.

Proof. Note that

A(U,α00, α11) ⊆ {f ∈ Hol(U,Lb(H0)) | ∀z ∈ U : ∥f(z)∥ ≤ C}
for a suitable C ≥ 0 (see Lemma A.8). Hence by Corollary 4.7, the set A(U,α00, α11)
is contained in a compact set and is therefore relatively compact.

For compactness, we will show that A(U,α00, α11) even is closed: Let (Ai)i∈I
be a net in A(U,α00, α11) converging to A ∈ Hol(U,Lb(H0)). Then for each z ∈ U ,
i ∈ I and φ ∈ H0,

1

α11
∥φ∥2H0

≤ Re⟨Ai(z)φ,φ⟩H0
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A(U,α00, α11) Hol(U,Lb(H0))

B(U,α01) Hol(U,Lb(H1,H0))

M(U,α) M(U)

C(U,α10) Hol(U,Lb(H0,H1))

D(U,α00, α11) Hol(U,Lb(H1))

Λ00

Λ01

Λ10

Λ11

Λ00

Λ01

Λ10

Λ11

Figure 4. Two equivalent ways of defining the initial topology on M(U,α)

holds and taking the limit in i ∈ I implies

1

α11
≤ ReA(z).

These last two inequalities also show that Ai(z)
−1 ∈ Lb(H0), i ∈ I and A(z)−1 ∈

Lb(H0) exist for every z ∈ U (Lemma A.8). Next, we have

α00∥φ∥2H0
≤ Re⟨Ai(z)−1φ,φ⟩H0

(6a)

for each z ∈ U , i ∈ I and φ ∈ H0. Using the substitution ψ = Ai(z)
−1φ, we get

α00∥Ai(z)ψ∥2H0
≤ Re⟨ψ,Ai(z)ψ⟩H0

= Re⟨Ai(z)ψ,ψ⟩H0
(6b)

for each z ∈ U , i ∈ I and ψ ∈ H0. The Cauchy–Schwarz inequality yields

α00
|⟨Ai(z)ψ,A(z)ψ⟩H0

|2

∥A(z)ψ∥2H0

≤ α00∥Ai(z)ψ∥2H0
≤ Re⟨Ai(z)ψ,ψ⟩H0

(7)

in case A(z)ψ ̸= 0. Taking the limits in the two scalar products, we obtain

α00∥A(z)ψ∥2H0
≤ Re⟨A(z)ψ,ψ⟩H0

for each z ∈ U and ψ ∈ H0 (the case A(z)ψ = 0 is trivial). The substitution
ψ = A(z)−1φ then implies ReA(z)−1 ≥ α00.

The same proof also shows that D(U,α00, α11) is compact. The sets B(U,α01)
and C(U,α10) are already of a form that allows us to directly employ Corollary 4.7.

If H is separable, both H0 and H1 are separable too. Hence, Corollary 4.7 yields
the desired metrisability. ❑

Theorem 5.6. M(U,α) equipped with the trace topology of M(U) is compact.
If H is separable, then M(U,α) is metrisable and thus sequentially compact.

Proof. If we endow

S := A(U,α00, α11)× B(U,α01)× C(U,α10)×D(U,α00, α11)

with the product topology, S is compact (metrisable) as the product of finitely many
compact (metrisable) spaces (see Lemma 5.5). Moreover, the mapping

(Λ00,Λ01,Λ10,Λ11) : M(U,α) → S
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A(U,α00, α11)

B(U,α01)

M(U,α) S

C(U,α10)

D(U,α00, α11)

(Λ00,Λ01,Λ10,Λ11)

Λ11

Λ00

Λ01

Λ10

Figure 5. Topology on M(U,α) as a product topology

is continuous. For (A,B,C,D) ∈ S we define (note that A(z) and D(z) are bounded
and invertible for z ∈ U by Lemma A.8 and note Lemmas A.2, A.3 and A.4) the
block operator

z 7→M(z) :=

(
A(z)−1 A(z)−1B(z)

C(z)A(z)−1 D(z) + C(z)A(z)−1B(z)

)
∈ Hol(U,Lb(H)).

Its inverse operator is given by

z 7→M(z)−1 =

(
A(z) +B(z)D(z)−1C(z) −B(z)D(z)−1

−D(z)−1C(z) D(z)−1

)
∈ Hol(U,Lb(H)).

In other words, we obtain M ∈ M(U). Moreover, Λ00(M) = A, Λ01(M) = B,
Λ10(M) = C and Λ11(M) = D, i.e., M ∈ M(U,α) is a pre-image of (A,B,C,D)
under (Λ00,Λ01,Λ10,Λ11). Clearly, it is the only one, which implies that

(Λ00,Λ01,Λ10,Λ11) : M(U,α) → S

is a continuous bijection. Since the diagram in Figure 5 is commutative and
initial topologies are transitive, (Λ00,Λ01,Λ10,Λ11) even is a homeomorphism, which
finishes the proof. ❑

Lemma 5.7. Let (Mi)i∈I be a net in M(U,α) and M : U → M(H0,H1). Then,
M ∈ M(U) and (Mi)i∈I converges toM w.r.t. τHol(H0,H1) if and only if (Mi(z))i∈I
converges to M(z) w.r.t. τ(H0,H1) for every z ∈ U . In either case, we have
M ∈ M(U,α).

Proof. As discussed in Remark 5.2, we know that parameterised implies pointwise
convergence to the same limit.

Conversely, assume that (Mi(z))i∈I converges to M(z) w.r.t. τ(H0,H1) for every
z ∈ U and consider any subnet of (Mi)i∈I . By virtue of Theorem 5.6, this subnet
has a further subnet converging to some N ∈ M(U,α) w.r.t. the τHol(H0,H1). Since
we also have pointwise convergence to M , Remark 5.2 implies N =M ∈ M(U,α).
So, every subnet has a further subnet converging to M which finishes the proof. ❑

Combining Lemma 5.7 and Lemma 2.2, we immediately obtain:

Corollary 5.8. Let (Mn)n∈N be a sequence in M(U,α) and M : U → Lb(H) such
that Mn(z) converges to M(z) in the strong operator topology for every z ∈ U . Then,
M ∈ M(U,α) and (Mn)n∈N converges to M w.r.t. τHol(H0,H1).

We stress that the statement of Corollary 5.8 is independent of the decomposition
considered for H. In the next section, we establish the announced continuity result
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for solution operators for abstract time-dependent partial differential equations, that
is, for evolutionary equations.

6. Applications to Evolutionary Equations

Finally, we establish the connection between evolutionary equations and the
parameterised nonlocal H-topology.

The following lemma is based on ideas obtained from [BV14, BEW23].

Lemma 6.1. Let H be a separable Hilbert space and (Tn)n∈N in Lb(H) with

ReTn ≥ c > 0 and ReT−1
n ≥ d > 0

for n ∈ N. Moreover, assume that A : dom(A) ⊆ H → H is a skew-selfadjoint
operator and that T ∈ Lb(H) such that 0 ∈ ρ(T + A). If (Tn + A)−1 converges to
(T +A)−1 in the weak operator topology, then we obtain

ReT ≥ c and ReT−1 ≥ d.

Proof. Tn +A is closed with adjoint T ∗
n −A and

Re⟨(Tn +A)φ,φ⟩H = Re⟨Tnφ,φ⟩H ≥ c∥φ∥2H (8)

for all φ ∈ dom(A) and n ∈ N. By virtue of Lemma A.11, we infer (Tn + A)−1 ∈
Lb(H) with ∥(Tn+A)−1∥ ≤ 1/c. Lemma A.8 yields ∥Tn∥ ≤ 1/d. Hence, we also get

∥A(Tn +A)−1∥ = ∥I − Tn(Tn +A)−1∥ ≤ 1 +
1

cd
(9)

for n ∈ N. Thus, for any subsequence of ((Tn +A)−1)n∈N, sequential compactness
of operator norm balls in the weak operator topology gives us a further subsequence
that converges in the weak operator topology on Lb(H,dom(A)), where the Hilbert
space dom(A) is endowed with the graph inner product. Since the weak operator
limits in Lb(H,dom(A)) and Lb(H) have to coincide ( dom(A) as a Hilbert space is
continuously embedded inH), we conclude that every subsequence of ((Tn+A)

−1)n∈N
has a further subsequence converging to (T +A)−1 in the weak operator topology
on Lb(H,dom(A)). In other words, (Tn +A)−1 converges to (T +A)−1 in the weak
operator topology on Lb(H,dom(A)).

We have Tn(Tn +A)−1 = I −A(Tn +A)−1 for n ∈ N. Therefore, Tn(Tn +A)−1

converges to I−A(T +A)−1 = T (T +A)−1 in the weak operator topology on Lb(H).
Furthermore, the skew-selfadjointness of A implies

Re⟨A(Tn +A)−1φ, (Tn +A)−1φ⟩H = 0 and Re⟨A(T +A)−1φ, (T +A)−1φ⟩H = 0

for all φ ∈ H and n ∈ N. Thus, from
Tn(Tn +A)−1 +A(Tn +A)−1 = I = T (T +A)−1 +A(T +A)−1

for all n ∈ N, it follows
lim
n→∞

Re⟨Tn(Tn +A)−1φ, (Tn +A)−1φ⟩H = lim
n→∞

Re⟨φ, (Tn +A)−1φ⟩H

= Re⟨φ, (T +A)−1φ⟩H
= Re⟨T (T +A)−1φ, (T +A)−1φ⟩H

(10)

for all φ ∈ H. Reusing the methods employed in (7) and (6), we obtain

c∥(T +A)−1φ∥2H ≤ lim
n→∞

Re⟨Tn(Tn +A)−1φ, (Tn +A)−1φ⟩H

= Re⟨T (T +A)−1φ, (T +A)−1φ⟩H
as well as

d∥T (T +A)−1φ∥2H ≤ lim
n→∞

Re⟨Tn(Tn +A)−1φ, (Tn +A)−1φ⟩H

= Re⟨T (T +A)−1φ, (T +A)−1φ⟩H
(11)
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for all φ ∈ H. As (T + A)−1φ ranges over the dense subspace dom(A) of H and
as both T and T−1 are bounded on H, we conclude ReT ≥ c and with (6) also
ReT−1 ≥ d. ❑

From now on, let H be a separable Hilbert space, let A : dom(A) ⊆ H → H be
skew-selfadjoint and let domA ∩ (kerA)⊥ endowed with the graph scalar product
of A be compactly embedded into H. Recall that this compact embedding implies
closedness of ranA by a standard argument (see [tEGW19, Lemma 4.1] or the
FA-Toolbox in [PZ20]) and hence (kerA)⊥ = ranA. Thus, we obtain the following
decomposition:

H = kerA︸ ︷︷ ︸
=:H0

⊕ ranA︸ ︷︷ ︸
=:H1

, (12)

and dom(A) ∩H1 is compactly embedded in H1.

Remark 6.2. Clearly, A itself has the form(
0 0

0 Ã

)
: kerA⊕ (domA ∩ ranA) ⊆ H0 ⊕H1 → H0 ⊕H1,

where Ã : (domA ∩ ranA) ⊆ H1 → H1 is the restriction of A. Introducing this

Ã gives that dom Ã as a Hilbert space is compactly embedded in H1. One can

immediately verify that Ã is still skew-selfadjoint by showing that (Ã)∗ = (̃A∗) =

−Ã. ♦

Lemma 6.3. Consider an operator T ∈ Lb(H) and assume T−1
00 ∈ Lb(H) as well

as Re(T11 − T10T
−1
00 T01) ≥ c > 0. Then (T +A)−1 ∈ Lb(H) and this inverse reads(
T−1
00 + T−1

00 T01T
−1
A T10T

−1
00 −T−1

00 T01T
−1
A

−T−1
A T10T

−1
00 T−1

A

)
, (13)

where TA := (T11 − T10T
−1
00 T01 + Ã). Moreover, we have

∥T−1
A ∥ ≤ 1

c
and ∥ÃT−1

A ∥ ≤ 1 +
∥T11 − T10T

−1
00 T01∥

c
.

Proof. Using the decomposition (12) and Lemma A.2, we can write

T +A =

(
T00 T01
T10 T11 + Ã

)
: H0 ⊕ (domA ∩H1) ⊆ H0 ⊕H1 → H0 ⊕H1

with all the components of T being bounded by ∥T∥. Due to Lemma A.11 and the

conditions imposed on T and A, T11 −T10T
−1
00 T01 + Ã is boundedly invertible on H1

with ∥(T11 − T10T
−1
00 T01 + Ã)−1∥H1

≤ 1/c (cf. (8)). Therefore, (13) is an element of
Lb(H). Furthermore, (13) maps from H0 ⊕H1 to H0 ⊕ (domA ∩H1). It remains
to verify that applying (13) to T +A from the right yields the identity on H, and
that applying (13) to T +A from the left yields the identity on H0 ⊕ (domA ∩H1).
These are two short and straightforward calculations. The remaining inequality
follows similarly to (9). ❑

The combination of the definition of the Schur topology together with the
compactness assumption on A leads to the following fundamental convergence
statement underlying our main result on evolutionary equations.

Lemma 6.4. Let (Tn)n∈N be a sequence in M(α) converging to T ∈ M(α) w.r.t.
τ(H0,H1) = τ(ker(A), ran(A)). Then, (Tn + A)−1 converges to (T + A)−1 in the
weak operator topology on Lb(H).



16 A. BUCHINGER, N. SKREPEK, AND M. WAURICK

Proof. In view of Lemma A.8, we can write both (Tn +A)−1 and (T +A)−1 in the
form of (13).

Consider any subsequence of (Tn +A)−1. We will not introduce a new index for
this subsequence. For φ0 + φ1 ∈ H0 ⊕H1 and n ∈ N, we have

∥φ1 − Tn,10T
−1
n,00φ0∥H1

≤ ∥φ1∥H1
+ α10∥φ0∥H0

.

Moreover, Lemma 6.3 yields

∥(Tn,11 − Tn,10T
−1
n,00Tn,01 + Ã)−1∥ ≤ 1

α00

and ∥Ã(Tn,11 − Tn,10T
−1
n,00Tn,01 + Ã)−1∥ ≤ 1 +

α11

α00
.

Thus, denoting

(un,1)n∈N :=
(
(Tn,11 − Tn,10T

−1
n,00Tn,01 + Ã)−1(φ1 − Tn,10T

−1
n,00φ0)

)
n∈N

and using
∥Tn,11 − Tn,10T

−1
n,00Tn,01∥ ≤ α11

as well as
∥Tn,10T−1

n,00∥ ≤ α10

for n ∈ N, we deduce that both (un,1)n∈N and

(Ãun,1)n∈N = (φ1 − Tn,10T
−1
n,00φ0 − (Tn,11 − Tn,10T

−1
n,00Tn,01)un,1)n∈N

are bounded sequences in H1. Hence, we may choose a subsequence (not relabelled)

such that (un,1)n∈N weakly converges to some u1 in dom(Ã) endowed with the

graph inner product. Since the continuity of Ã : dom(Ã) → H1 (w.r.t. the graph

norm) implies its weak continuity, the sequence Ãun,1 weakly converges to Ãu1. The

compact embedding of dom(Ã) into H1 yields H1-convergence of (a subsequence
of) (un,1)n∈N to u1 ∈ H1. Next, consider ((Tn,11 − Tn,10T

−1
n,00Tn,01)un,1)n∈N. As

this is a uniformly bounded sequence of operators converging in the weak operator
topology (τ(H0,H1)-convergence) applied to a convergent sequence in H1, the
sequence altogether weakly converges to (T11 − T10T

−1
00 T01)u1. All in all, we have

proven
Ãu1 = φ1 − T10T

−1
00 φ0 − (T11 − T10T

−1
00 T01)u1,

i.e.,
u1 = (T11 − T10T

−1
00 T01 + Ã)−1(φ1 − T10T

−1
00 φ0).

In other words, the H1-component of (Tn + A)−1(φ0 + φ1) converges to the H1-
component of (T +A)−1(φ0 + φ1).

The convergence of (un,1)n∈N, τ(H0,H1)-convergence and the uniform bound

∥T−1
n,00Tn,01∥ ≤ α01

for n ∈ N yield weak convergence of T−1
n,00φ0 − T−1

n,00Tn,01un,1 to T−1
00 φ0 − T−1

00 T01u1.

In other words, the H0-component of (Tn +A)−1(φ0 + φ1) weakly converges to the
H0-component of (T +A)−1(φ0 + φ1).

To sum up, we have shown that every subsequence of (Tn +A)−1 has a further
subsequence that converges to (T +A)−1 in the weak operator topology. ❑

We are now in the position to state and prove the main result of this section.

Theorem 6.5. Consider ν0 > 0 and a sequence of material laws (Mn)n∈N with
CRe>ν0 in their domain. Furthermore, assume there exist c, d > 0 with

Re zMn(z) ≥ c and ∥Mn(z)∥ ≤ d

for all z ∈ CRe>ν0 and all n ∈ N. This implies sb(Mn) ≤ ν0 for all n ∈ N. If there
exists an M : CRe>ν0 → M(ker(A), ran(A)) with ∥M(z)∥ ≤ d for z ∈ CRe>ν0 and
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(Mn)n∈N converges to M pointwise in τ(ker(A), ran(A)), then M is a material law
with

Re zM(z) ≥ c (14)

for all z ∈ CRe>ν0 and sb(M) = ν0. Moreover, we have

∂tMn(∂t) +A
−1

→ ∂tM(∂t) +A
−1

(15)

in the weak operator topology on Lb(L2,ν(R,H)) for every ν > ν0.

Proof. Lemma A.8 yields

Re(zMn(z))
−1 ≥ c∥zMn(z)∥−2 ≥ cd−2|z|−2

for all z ∈ CRe>ν0 and all n ∈ N. Fix any µ > ν0. Then by easy calculations
(Lemmas A.2, A.8 and A.9), we find an α ∈ (0,∞)2×2 such that (z 7→ zMn(z)) ∈
M(C|Im|<µ

µ>Re>ν0
, α) for n ∈ N. Lemma 5.7 yields holomorphicity of M and zM(z) ∈

M(α) on C|Im|<µ
µ>Re>ν0

. Since µ > ν0 was arbitrary, we obtain holomorphicity of M on
CRe>ν0 .

In particular, we have proven zMn(z) ∈ M(α) for all n ∈ N and zM(z) ∈ M(α)
for each z ∈ CRe>ν0 (with the α only depending on z). Thus, Lemma 6.4 yields

(zMn(z) +A)−1 → (zM(z) +A)−1 (16)

in the weak operator topology for each z ∈ CRe>ν0 , and Lemma 6.1 proves (14). This
means, Theorem 3.2 is applicable to both Mn for n ∈ N and to M . Fourier–Laplace
transforming (16), we get (15). ❑

Remark 6.6. It is possible to replace the uniform boundedness condition imposed
on (Mn)n∈N and its limit M in Theorem 6.5 with

Re⟨Mn(z)φ,φ⟩H ≥ 1

d
∥Mn(z)φ∥2H (17)

for all z ∈ CRe>ν0 and n ∈ N:
First, note that Re zMn(z) ≥ c and Lemma A.8 show that Mn(z) is boundedly

invertible for all z ∈ CRe>ν0 and n ∈ N. Hence looking at (6), we see that (17) is
equivalent to Re(Mn(z))

−1 ≥ 1/d and with Lemma A.8 we even obtain ∥Mn(z)∥ ≤ d
for all z ∈ CRe>ν0 and n ∈ N. Therefore, we can apply the proof of Theorem 6.5
until we get (16) and (14).

In order to obtain (15), we need to apply Theorem 3.2, which means, it remains
to prove the uniform boundedness ofM . Since we now have a compactness condition
on A, we can refine the argument (10). We have〈

zMn(z)(zMn(z) +A)−1φ, (zMn(z) +A)−1φ
〉
H (18a)

+
〈
A(zMn(z) +A)−1φ, (zMn(z) +A)−1φ

〉
H (18b)

=
〈
zM(z)(zM(z) +A)−1φ, (zMn(z) +A)−1φ

〉
H (18c)

+
〈
A(zM(z) +A)−1φ, (zMn(z) +A)−1φ

〉
H (18d)

for φ ∈ H. (18c) and (18d) converge due to (16).
For (18b), we recall that we have proven weak convergence of A(zMn(z)+A)

−1φ
to A(zM(z) +A)−1φ in the first paragraph of the proof of Lemma 6.1. Moreover,
(zMn(z) + A)−1φ in the second entry of the inner product can be replaced with
its projection onto H1 = ranA as it is multiplied with A(zMn(z) +A)−1φ ∈ ranA.
Obviously, this projected sequence converges weakly in the Hilbert space dom(A)∩H1.
As a consequence, we get strong convergence to the projection of (zM(z) +A)−1φ
onto H1 by the compact embedding of dom(A)∩H1 into H. Alltogether, that means
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convergence of (18b) to ⟨A(zM(z) + A)−1φ, (zM(z) + A)−1φ⟩H and thus (18a)
converges to

⟨zM(z)(zM(z) +A)−1φ, (zM(z) +A)−1φ⟩H.

Dividing by z and repeating the argument (11), we conclude Re(M(z))−1 ≥ 1/d
and with Lemma A.8 even ∥M(z)∥ ≤ d for all z ∈ CRe>ν0 . ♦

7. Examples

7.1. On a model for cell migration. In [EPSZ20], the authors introduce and
analyse a nonlocal model for cell migration. Here, we are interested to exemplify
our previous findings. Hence, we only focus on an autonomous, linear variant of
the equation in [EPSZ20]. However, we may allow for matrix-valued coefficients
here. For this, let throughout Ω ⊆ Rn be a bounded, weak Lipschitz domain with
continuous boundary, and introduce, for r ≥ 0 and q ∈ L2(Ω)

n, the linear operator
Sr given by

Srq(x) := n

∫ 1

0

1

|S1|

∫
S1

⟨q(x+ rsy), y⟩Rny dσ(y) ds (x ∈ Ω),

where q is extended to Rn via 0, S1 denotes the sphere with radius 1 and σ its
surface measure. According to [EPSZ20], we have Sr ∈ Lb(L2(Ω)

n) for all r ≥ 0.
Moreover, the operator family (Sr)0≤r≤1 is a special case of an approximation of
unity.

Definition 7.1. We call (Rr)0≤r≤1 in Lb(L2(Ω)
n) an approximation of unity, if

sup0≤r≤1∥Rr∥ <∞ and Rr → 1 in the strong operator topology as r → 0. ♥

Note that the example (Tr)r treated in [EPSZ20] is, too, an approximation of
unity.

In the following, let (Rr)r be an approximation of unity. Then consider a1, a2, a3 ∈
M(α, β; Ω) for some 0 < α < β and consider, for 0 ≤ r ≤ 1, the following equation

∂tcr − div(a1 − a2Rra3) grad cr = f ∈ L2,ν(R; L2(Ω)),

with f and ν > 0 fixed. Introducing qr := −Ar grad cr with Ar := (a1 − a2Rra3)
and assuming homogeneous Neumann boundary conditions for qr, we rewrite the
system as an evolutionary equation. For this, we impose the standing assumption
that there exists c > 0 such that for all 0 ≤ r ≤ 1, we have

Re(a1 − a2Rra3) ≥ c

in the sense of positive definiteness in Lb(L2(Ω)
n). This assumption is slightly

weaker than the one imposed in [EPSZ20]. By Lemma A.8, it implies that Ar is
boundedly invertible with ∥A−1

r ∥ ≤ 1/c. Then, we may equivalently consider[
∂t

(
1 0
0 0

)
+

(
0 0
0 A−1

r

)
+

(
0 d̊iv

grad 0

)](
cr
qr

)
=

(
f
0

)
where d̊iv := div |C∞

c (Ω)n is the closure of div as an operator in L2 on smooth
compactly supported vector fields. This models homogeneous Neumann boundary
conditions.

Note that

Mr : z 7→
(
1 0
0 0

)
+ z−1

(
0 0
0 A−1

r

)
defines material laws for 0 ≤ r ≤ 1 with sb(Mr) = 0 and the following properties:

Re zMr(z) ≥ min{Re z,ReA−1
r }

and

∥Mr(z)∥ ≤ 1 + ∥z−1A−1
r ∥ ≤ 1

c|z|
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for |z| > 0. We obtain

ReA−1
r = Re(a1 − a2Rra3)

−1

≥ c∥(a1 − a2Rra3)∥−2 ≥ c(β + β2 sup
0≤r≤1

∥Rr∥)−2

by Lemma A.8.
Since (Rr)r is an approximation of unity, it follows from Lemma A.10 that

A−1
r → A−1

0 in the strong operator topology as r → 0.

Theorem 7.2. For all ν > 0, we have[
∂t

(
1 0
0 0

)
+

(
0 0
0 A−1

r

)
+

(
0 d̊iv

grad 0

)]−1

→
[
∂t

(
1 0
0 0

)
+

(
0 0
0 A−1

0

)
+

(
0 d̊iv

grad 0

)]−1

as r → 0 in the weak operator topology of Lb

(
L2,ν(R; L2(Ω)

n+1)
)
.

Proof. Considering the Rellich–Kondrachov theorem and the above discussion, this
immediately follows from Lemmas A.2, A.8 and A.9, Corollary 5.8 and Theorem 6.5.

❑

Remark 7.3. In [Wau16a, Theorem 5.1.3], one can show – even in the non-autonomous
case – that the solution operators even converge in the strong operator topology.
The example is merely presented to have a nonlocal example at hand.

In the case n = 3, note that the convergence assumptions of the above theorem
can be weakened. We particularly refer to the example in [Wau18] showing that if,
additionally, a1 is replaced by an H-converging sequence (a1,k) with limit a1, the
resulting sequence

(a1,k − a2R1/ka3)
−1
k

converges to (a1 − a2R0a3)
−1 in τ(g, c0). ♦

7.2. A homogenisation problem for scalar piezo-electricity. In this section,
we consider a classical homogenisation problem in order to showcase the applicability
for rapidly oscillating albeit local coefficients. Again, we refer to the example in
[Wau18] for more sophisticated situations. Here, we follow the model description of
piezo-electro-magnetism from [Pic17]. Note, that we treat homogeneous Dirichlet
boundary conditions throughout and for ease of readability we simplify the case
to scalar elastic waves. The rationale for 3-dimensional elastic waves can be dealt
with similarly. Let Ω ⊆ R3 be a bounded, weak Lipschitz domain with continuous
boundary. Additionally, assume that Ω is topologically trivial (recall Example 2.3
for the Helmholtz decomposition). We adopt the notation rolled out in [Pic17]
and consider the evolutionary equation (∂tM0 +M1 +A)U = F with the following
setting

M0 :=


1 0 0 0
0 C−1 C−1e 0
0 e∗C−1 ε+ e∗C−1e 0
0 0 0 µ

 , M1 :=


0 0 0 0
0 0 0 0
0 0 σ 0
0 0 0 0

 ,

A :=


0 −div 0 0

− ˚grad 0 0 0
0 0 0 − curl

0 0 ˚curl 0

 ,
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where C, e, µ, ε, σ are operators in Lb(L2(Ω)
3), of which C, µ and ε are self-adjoint

and non-negative, and ˚curl := curl |C∞
c (Ω)3 is defined similarly to d̊iv before. Well-

posedness in L2,ν(R; L2(Ω)
10) can be guarenteed by [Pic17], if for some c, d > 0 and

ν0 ≥ 0 we have

C ≥ 1/d, µ ≥ c and νε+Reσ ≥ c

for all ν > ν0. Additionally asking for

C−1 ≥ c, µ−1 ≥ 1/d and Re
(
(ε+ σ/z)−1

)
≥ 1/d

for Re z > ν0, we analogously obtain (17). In order to address the homogenisation
problem, we consider bounded sequences (Cn)n, (en)n, (µn)n, (εn)n, (σn)n where we
assume the same self-adjointness, non-negativity and positive-definiteness conditions
as before for C, ε, µ, σ. The positive-definiteness constants c, d and ν0 are supposed
to be independent of n.

The operator A induces the following decomposition (see Example 2.3) of the
space H = L2(Ω)

10:

H = L2(Ω)
10 = ({0} ⊕ c⊕ g0 ⊕ g︸ ︷︷ ︸

=kerA=H0

)⊕ (L2(Ω)⊕ g0 ⊕ c⊕ c0︸ ︷︷ ︸
=ranA=H1

).

Note that the assumption that Ω is topologically trivial guarentees that HD(Ω) =
{0} = HN (Ω) and therefore these spaces do not appear in the Helmholtz decompo-
sition.

The application of Theorem 6.5 now reads as follows:

Theorem 7.4. Assume that for ν > ν0 and for all z ∈ CRe>ν(
C−1
n C−1

n en
e∗nC

−1
n εn + e∗nC

−1
n en + z−1σn

)
converges to some Z(z−1) in τ(c⊕ g0, g0 ⊕ c) and µn → µ in τ(g0, c) as n → ∞.
Then

M : z 7→


1 0 0 0
0 0
0 0
0 0 0 µ

Z(z−1)

 ∈ Lb

(
L2(Ω)⊕ L2(Ω)

6 ⊕ L2(Ω)
3
)

is a material law that satisfies Re zM(z) ≥ c′ for all z ∈ CRe>ν and a suitable c′ > 0.
Moreover,∂t


1 0 0 0
0 C−1

n C−1
n en 0

0 e∗nC
−1
n εn + e∗nC

−1
n en 0

0 0 0 µn

+


0 0 0 0
0 0 0 0
0 0 σn 0
0 0 0 0

+A


−1

→ [∂tM(∂t) +A]
−1

in the weak operator topology in Lb(L2,ν(R; L2(Ω)
10).

Proof. Considering the Rellich–Kondrachov theorem, the compact embeddings of

dom(curl) ∩ c0 and dom( ˚curl) ∩ c as Hilbert spaces into L2(Ω)
3 and the above

discussion, the claim follows from Theorem 6.5 in combination with Remark 6.6. ❑

Remark 7.5. It is desirable to obtain a more explicit formula for the limit expression
in Theorem 7.4 if more structural assumptions on the coefficients and the couplings
are at hand. In fact, in a slightly different situation this is done in [Fra83]. Thus,
at least for periodic, highly oscillatory coefficents one can anticipate the existence
of a limit. The particular computation of which, however, will be left to future
research. ♦
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8. Conclusion

In this paper, we have defined a topology on holomorphic, operator-valued func-
tions (Definition 5.1) and provided a compactness result (Theorem 5.6). Moreover,
we have identified a continuity statement related to the resolvent of a skew-selfadjoint
operator with compact resolvent outside its kernel that, together with the intro-
duced topology, yields a convergence result (Theorem 6.5) that has applications to
(abstract, nonlocal) homogenisation problems for evolutionary equations and can be
easily applied to a class of nonlocal equations as well as to homogenisation problems
for systems of time-dependent partial differential equations.

Appendix A.

Remark A.1. Whenever we consider the holomorphic functions Hol(U,C) for an
open U ⊆ C, we endow this space with the topology of compact convergence. That
means, a sequence in Hol(U,C) converges if and only if it converges uniformly
on every compact subset of U . One can (cf. [Are46] and [Eng89, Thm. 3.4.16])
explicitly construct a complete and separable metric that induces this topology, i.e.,
Hol(U,C) is Polish. Note that (obviously) both addition and scalar multiplication
are continuous w.r.t. this topology, i.e., Hol(U,C) is a topological vector space. ♦

Lemma A.2. Let U ⊆ C be an open set and let H be a Hilbert space that can be
orthogonally decomposed into H = H0 ⊕H1. Then, the block operator

M =

(
M00 M01

M10 M11

)
: U → HH

maps to Lb(H) if and only if each block entry Mij : U → HHj

i maps to Lb(Hj ,Hi).
In that case,M : U → Lb(H) is holomorphic if and only if each block entryMij : U →
Lb(Hj ,Hi) is holomorphic.

Proof. For v ∈ H with ∥v∥H ≤ 1 and its unique decomposition v = v0 + v1,
the Pythagorean theorem yields ∥v0∥H, ∥v1∥H ≤ 1. Once again applying the
Pythagorean theorem, we obtain

∥M(z)v∥2H = ∥M00(z)v0 +M01(z)v1∥2H + ∥M10(z)v0 +M11(z)v1∥2H
≤ (∥M00(z)∥+ ∥M01(z)∥)2 + (∥M10(z)∥+ ∥M11(z)∥)2

for z ∈ U . This shows

∥M(z)∥ ≤ ∥M00(z)∥+ ∥M01(z)∥+ ∥M10(z)∥+ ∥M11(z)∥. (19)

Conversely, assume v0 ∈ H0 with ∥v0∥ ≤ 1. Then, the Pythagorean theorem yields

∥M00(z)v0∥2H ≤ ∥M00(z)v0∥2H + ∥M10(z)v0∥2H = ∥M(z)v0∥2H ≤ ∥M(z)∥2

for z ∈ U . After similar calculations for the other block entries, we get

max
(
∥M00(z)∥, ∥M01(z)∥, ∥M10(z)∥, ∥M11(z)∥

)
≤ ∥M(z)∥. (20)

Inequalities (19) and (20) immediately prove the claimed statements. ❑

Lemma A.3. Let U ⊆ C be an open set and let H be a Hilbert space. If M,N : U →
Lb(H) are holomorphic, then also the product MN is holomorphic with derivative
MN ′ +M ′N .
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Proof. Note that the multiplication in Lb(H) is a continuous operation. Hence,

lim
w→z

M(z)N(z)−M(w)N(w)

z − w

= lim
w→z

M(z)N(z)−M(z)N(w) +M(z)N(w)−M(w)N(w)

z − w

= lim
w→z

M(z)N(z)−M(z)N(w)

z − w
+ lim
w→z

M(z)N(w)−M(w)N(w)

z − w

=M(z) lim
w→z

N(z)−N(w)

z − w
+ lim
w→z

M(z)−M(w)

z − w
N(w)

=M(z)N ′(z) + lim
w→z

M(z)−M(w)

z − w
lim
w→z

N(w)

=M(z)N ′(z) +M ′(z)N(z),

which implies that MN is complex differentiable. ❑

Lemma A.4. Let U ⊆ C be an open set and let H be a Hilbert space. If a
holomorphic functionM : U → Lb(H) is such thatM(z) is invertible for every z ∈ U ,
then M(·)−1 : U → Lb(H) is also holomorphic with derivative −M(·)−1M ′M(·)−1.

Proof. Note that A 7→ A−1 is continuous on {A ∈ Lb(H) |A is invertible} by
[Rud91, Thm. 10.12] and the multiplication in Lb(H) is a continuous operation.
Hence,

lim
w→z

M(z)−1 −M(w)−1

z − w
= lim
w→z

M(z)−1(M(w)−M(z))M(w)−1

z − w

=M(z)−1 lim
w→z

−(M(z)−M(w))

z − w
lim
w→z

M(w)−1

= −M(z)−1M ′(z)M(z)−1,

which implies that M(·)−1 is complex differentiable. ❑

Theorem A.5 (Montel’s theorem [Rud87, Thm. 14.6]). Let U ⊆ C be open and
S ⊆ Hol(U,C). Then S is relatively compact (also called normal), if and only if, S
is locally uniformly bounded, i.e., for all K ⊆ U compact there exists a CK > 0 such
that

sup
z∈K,f∈S

|f(z)| ≤ CK .

Corollary A.6. Hol(U,Br(0)) is compact, where Br(0) is the closed ball with radius
r ≥ 0 in C.

Proof. By Theorem A.5 (Montel’s theorem) we conclude that Hol(U,Br(0)) is
relatively compact in Hol(U,C). We finish the proof by showing the closedness
of Hol(U,Br(0)): Let (fn)n∈N be a sequence in Hol(U,Br(0)) that converges to
f ∈ Hol(U,C), i.e., for all K ⊆ U compact we have

sup
z∈K

|fn(z)− f(z)| → 0.

In particular fn(z) converges to f(z) in C. Since |fn(z)| ≤ 1 and limits preserve
inequalities, we conclude |f(z)| ≤ 1. ❑

The following theorem is a small adaption of [Bar85, Prop. 6.1]. We just regard
U ⊆ C instead of the more general case U ⊆ Y for a normed vector space Y.

Theorem A.7. Let X be a Banach space and U ⊆ C open. If Ψ ⊆ X ′ has the
following property

W ⊆ X is bounded ⇔ ψ(W ) ⊆ C is bounded ∀ψ ∈ Ψ,



OPERATOR CONTINUITY FOR EVOLUTIONARY EQUATIONS 23

then the following statements are equivalent:

(i) f ∈ Hol(U,X ),

(ii) ψ ◦ f ∈ Hol(U,C) for all ψ ∈ Ψ.

Lemma A.8 ([STW22, Prop. 6.2.3]). Let H be a Hilbert space and A ∈ Lb(H) such
that ReA ≥ c > 0. Then, A−1 ∈ Lb(H) with ∥A−1∥ ≤ 1

c and ReA−1 ≥ c∥A∥−2.

Lemma A.9 ([DITW23, Lemma 3.9]). Let H be a Hilbert space that can be or-
thogonally decomposed into H = H0 ⊕H1. Consider an operator T ∈ Lb(H) in his
block form (Tij)i,j∈{0,1} (cf. Lemma A.2). If we have ReT ≥ d for some d > 0, then

ReT11 ≥ d and Re(T00 − T01T
−1
11 T10) ≥ d follow.

Proof. Let φ1 ∈ H1. Then,

Re⟨T11φ1, φ1⟩H1
= Re

〈
T

(
0
φ1

)
,

(
0
φ1

)〉
H

≥ d

〈(
0
φ1

)
,

(
0
φ1

)〉
H

= d⟨φ1, φ1⟩H1
.

By Lemma A.8 it follows that T11 is invertible. For the accretivity of the second
expression, one quickly checks the relation R = Q∗TQ, where

Q :=

(
1 0

−(T01T11)
∗ 1

)
and R :=

(
T00 − T01T

−1
11 T10 0

T10 − T11(T
−1
11 )∗T01 T11

)
.

Next, we let φ0 ∈ H0, S := T00 − T01T
−1
11 T10 and compute

Re⟨Sφ0, φ0⟩H0
= Re

〈
R

(
φ0

0

)
,

(
φ0

0

)〉
H

= Re

〈
TQ

(
φ0

0

)
, Q

(
φ0

0

)〉
H

≥ d

〈
Q

(
φ0

0

)
, Q

(
φ0

0

)〉
H

≥ d⟨φ0, φ0⟩H0 . ❑

Lemma A.10 ([STW22, Prop. 13.1.4]). Let H be a Hilbert space and (Tn)n∈N a
boundedly invertible sequence in Lb(H) such that supn∈N∥T−1

n ∥ < ∞. If (Tn)n∈N
converges to a T ∈ Lb(H) w.r.t. the strong operator topology and if T has dense
range, then T is boundedly invertible and (T−1

n )n∈N converges to T−1 w.r.t. the
strong operator topology.

Lemma A.11 ([STW22, Prop. 6.3.1]). Let H be a Hilbert space and A : dom(A) ⊆
H → H densely defined and closed with dom(A∗) ⊆ dom(A). If Re⟨Aφ,φ⟩H ≥ c > 0
holds for all φ ∈ dom(A), then A−1 ∈ Lb(H) and ∥A−1∥ ≤ 1

c .
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