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Abstract. We investigate the stability of the wave equation with spatial
dependent coefficients on a bounded multidimensional domain. The system
is stabilized via a scattering passive feedback law. We formulate the wave
equation in a port-Hamiltonian fashion and show that the system is semi-
uniform stable, which is a stability concept between exponential stability and
strong stability. Hence, this also implies strong stability of the system. In
particular, classical solutions are uniformly stable. This will be achieved by
showing that the spectrum of the port-Hamiltonian operator is contained in the
left half plane C− and the port-Hamiltonian operator generates a contraction
semigroup. Moreover, we show that the spectrum consists of eigenvalues only
and the port-Hamiltonian operator has a compact resolvent.

1. Introduction

In this paper we investigate a stabilizing feedback for the following boundary
control system

u(t, ζ) =
∂w

∂Tν
(t, ζ), t ≥ 0, ζ ∈ Γ1,

∂2w

∂t2
(t, ζ) =

1

ρ(ζ)
div (T (ζ)∇w(t, ζ)) , t ≥ 0, ζ ∈ Ω,

w(t, ζ) = h(ζ), t ≥ 0, ζ ∈ Γ0,

w(0, ζ) = w0(ζ), ζ ∈ Ω,

∂w

∂t
(0, ζ) = w1(ζ), ζ ∈ Ω,

y(t, ζ) =
∂w

∂t
(t, ζ), t ≥ 0, ζ ∈ Γ1,

(1a)

with feedback law

u(t, ζ) = −k(ζ)y(t, ζ), t ≥ 0, ζ ∈ Γ1, (1b)

where u and y are the boundary control and observation, respectively and Ω ⊆ Rn

is bounded domain and connected with Lipschitz boundary ∂Ω = Γ0 ∪ Γ1 with
Γ0 ∩ Γ1 = ∅, Γ0 and Γ1 ̸= ∅ are open in the relative topology of ∂Ω and the
boundaries of Γ0 and Γ1 have surface measure zero (Γ0 may be empty). Note,
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that Γ0 and Γ1 do not have to be connected. Furthermore, w(ζ, t) is the deflection
at point ζ ∈ Ω and t ≥ 0, and profile h is given on Γ0, where the wave is fixed.
Let Young’s elasticity modulus T : Ω → Cn×n be a Lipschitz continuous matrix-
valued function such that T (ζ) is a positive and invertible matrix (a.e.) and
T−1 ∈ L∞(Ω)n×n. The vector ν denotes the outward normal at the boundary and
∂

∂Tνw(t, ζ) = Tν · ∇w(t, ζ) = ν · T∇w(t, ζ) is the conormal derivative. Further,
k : Γ1 → R is a positive and bounded function such that also its pointwise inverse
k−1 = 1

k is bounded. Moreover, we have the Lipschitz continuous mass density
ρ : Ω → R+, that satisfies ρ−1 ∈ L∞(Ω). Finally, w0 and w1 are the initial conditions.

Stability of (1) has been studied in the literature by several authors, see e.g.,
[1, 12, 16, 21]. Strong stability has been investigated in [21]. Further, exponential
stability of the wave equation with constant T and ρ has been shown in [16] using
multiplier methods. For smooth domains, in [1] the equivalence of exponential
stability and the so-called geometric control condition was shown by methods
from micro-local analysis. In [12] this system also appears in port-Hamiltonian
formulation, but with constant T and ρ and C2 boundary. Under these restriction
it could be shown that this systems is even exponential stable. However, semi-
uniform stability, a notion which is stronger than strong stability and weaker than
exponential stability, of the multidimensional wave equation with spatial dependent
functions ρ and T on quite general domains has not been studied in the literature.

We aim to show semi-uniform stability of the multidimensional wave equation (1)
using a port-Hamiltonian formulation. Semi-uniform stability implies strong stability,
and thus we extend the results obtained in [21]. To prove our main result we use
the fact that semi-uniform stability is satisfied if the port-Hamiltonian operator
generates a contraction semigroup and possesses no spectrum in the closed right
half plane. Port-Hamiltonian systems encode the underlying physical principles
such as conservation laws directly into the structure of the system structure. For
finite-dimensional systems there is by now a well-established theory [22, 6, 5]. The
port-Hamiltonian approach has been further extended to the infinite-dimensional
situation, see e.g., [23, 17, 14, 29, 27, 13, 15]. In [15] the authors showed that the
port-Hamiltonian formulation of the wave equation (1) in n spatial dimensions
possess unique mild and classical solutions.

We proceed as follows. In Section 2 we model the multidimensional wave equa-
tion as a port-Hamiltonian system with a suitable state space. The main results
concerning stability are then obtained in Section 3, where we analyze the spectrum
of the differential operator of the port-Hamiltonian formulation. We will see that
finding points in the resolvent set is linked to solvability of lossy Helmholtz equa-
tions. We will show that our operator has a compact resolvent and its resolvent set
contains the imaginary axis. At that point we can apply existing theory to justify
semi-uniform stability. Finally, used notations and results on Sobolev spaces and
Gårdings inequalities are presented in the Appendix.

2. Port-Hamiltonian formulation of the System

In order to find a port-Hamiltonian formulation of our system, that is suitable
for our purpose, we split the system (1) into a time independent system for the
equilibrium and a dynamical system with homogeneous boundary conditions. The
time static system for the equilibrium is given by

div T (ζ)∇we(ζ) = 0, ζ ∈ Ω,

we(ζ) = h(ζ), ζ ∈ Γ0,

∂we

∂Tν
(ζ) = 0, ζ ∈ Γ1,

(2)
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and a dynamical system with homogeneous Dirichlet boundary conditions on Γ0 is
given by

∂2wd

∂t2
(t, ζ) =

1

ρ(ζ)
div(T (ζ)∇wd(t, ζ)), t ≥ 0, ζ ∈ Ω,

wd(t, ζ) = 0, t ≥ 0, ζ ∈ Γ0,

wd(0, ζ) = w0(ζ)− we(ζ), ζ ∈ Ω,

∂wd

∂t
(0, ζ) = w1(ζ), ζ ∈ Ω,

∂wd

∂t
(t, ζ) = −k

∂wd

∂Tν
(t, ζ), t ≥ 0, ζ ∈ Γ1.

(3)

The original system is solved by w(t, ζ) = we(t, ζ) + wd(ζ). As in [15] the system
in (3) can be described in a port-Hamiltonian manner by choosing the state x(t, ζ) =[
ρ(ζ) ∂

∂twd(t,ζ)

∇wd(t,ζ)

]
. By using the convention[

x1(t)
x2(t)

]
:= x(t) := x(t, ·)

we can write the system (3) as

d

dt
x(t) =

[
0 div
∇ 0

] [ 1
ρ 0

0 T

]
x(t),

x(0) =

[
ρw1

∇(w0 − we)

]
,

γ0
1
ρx1(t)

∣∣
Γ0

= 0,

γ0
1
ρx1(t)

∣∣
Γ1

= −kγνTx2(t)
∣∣
Γ1
.

The boundary trace γ0 and the normal trace γν are explained in the appendix.
Kurula and Zwart [15] choose the state space L2(Ω)n+1 equipped with the energy
inner product

⟨x, y⟩ :=
〈
x,

[
1
ρ 0

0 T

]
y
〉
L2(Ω)n+1

,

which is equivalent to the standard inner product of L2(Ω)n+1 thanks to the
assumptions on T and ρ. They then show the existence of mild and classical solution
via semigroup methods. For well-posedness this is a suitable state space, but when it
comes to stability this state space is too large as it does not reflect the fact that the
second component of the state variable x2 is of the form ∇v, for some function v in
the Sobolev space H1

Γ0
(Ω). For the precise definition of H1

Γ0
(Ω) we refer the reader to

the appendix. Thus, we choose the state space XH as L2(Ω)×∇H1
Γ0
(Ω), instead of

L2(Ω)n+1. Note that ∇H1
Γ0
(Ω) is closed in L2(Ω)n by Poincaré’s inequality. Hence,

XH is also a Hilbert space with the L2-inner product. Nevertheless, we also use the
equivalent energy inner product on XH, that is

⟨x, y⟩XH :=
〈
x,

[
1
ρ 0

0 T

]
y
〉
L2(Ω)n+1

.

Furthermore, we define

A :=
[

0 div
∇ 0

] [ 1
ρ 0

0 T

]
with dom(A) :=

[
1
ρ 0

0 T

]−1 (
H1

Γ0
(Ω)×H(div,Ω)

)
as densely defined operator on L2(Ω)n+1. The definition of H(div,Ω)

)
is given in

the appendix. Note that we have already packed the boundary condition γ0
1
ρx1 = 0
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on Γ0 into the domain of A. Moreover, by construction ranA = XH. Taking the
state space and the remaining boundary conditions (feedback) into account gives

A := A
∣∣
dom(A)

,

where dom(A) :=
{
x ∈ dom(A)

∣∣∣ γ0 1
ρx1 = −kγνTx2 on Γ1

}
∩ XH

(4)

as an operator on XH. Note that ranA ⊆ ranA = XH. Therefore the operator A
indeed maps into XH.

The corresponding operator on L2(Ω)n+1 would be

A0 := A
∣∣
dom(A0)

,

where dom(A0) :=
{
x ∈ dom(A)

∣∣∣ γ0 1
ρx1 = −kγνTx2 on Γ1

}
.

(5)

By [15], A0 generates a contraction semigroup on L2(Ω)n+1 endowed with ⟨x, y⟩ :=〈
x,

[
1
ρ 0

0 T

]
y
〉
L2

. Note that this operator allows elements in its domain which do not
respect that the second component is a gradient field. This can lead to solutions
that are not related to the original problem anymore, as by construction of the state
x(t, ζ) the second component is ∇wd(t, ζ) and therefore a gradient field. Lemma 3.15
shows that this is problematic for stability.

We do not need to rebuild the semigroup theory in [15] for the state space XH.
We will see that A inherits most of the properties of A0 as A = A0

∣∣
XH

.

Lemma 2.1. Let (T (t))t≥0 be a strongly continuous semigroup on a Hilbert space X

and Ã its generator. Then every subspace V ⊇ ran Ã is invariant under (T (t))t≥0.
Moreover, Ã

∣∣
V

generates the strongly continuous semigroup

(TV (t))t≥0 := (T (t)
∣∣
V
)t≥0,

if V is additionally closed.

Proof. Let t ≥ 0 and x ∈ V . Then it is well-known that

Ã

∫ t

0

T (s)x ds︸ ︷︷ ︸
∈ran Ã⊆V

= T (t)x− x︸︷︷︸
∈V

.

Hence, T (t)x ∈ V , because the left-hand-side is in ran Ã ⊆ V and V is a subspace.
The remaining assertion follows from [7, ch. II sec. 2.3]. ❑

Remark 2.2. If the strongly continuous semigroup (T (t))t≥0 is even a contraction
semigroup, then also (TV (t))t≥0 is a contraction semigroup.

Proposition 2.3. The operator A given by (4) is a generator of contraction
semigroup.

Proof. By [15], A0 (defined in (5)) is a generator of a contraction semigroup
(T0(t))t≥0. Because of ranA0 ⊆ ranA = XH and Lemma 2.1 A = A0

∣∣
XH

gen-
erates the contraction semigroup (T (t))t≥0 := (T0(t)

∣∣
XH

)t≥0. ❑

The following lemma is an easy consequence of the integration by parts formula
for div-∇ from the appendix and will be useful in the next section.

Lemma 2.4. Let A be given by (4) and x, y ∈ XH. Then

⟨Ax, y⟩L2(Ω) + ⟨x,Ay⟩L2(Ω) = ⟨γνTx2, γ0
1
ρy1⟩L2(Γ1) + ⟨γ0 1

ρx1, γνTy2⟩L2(Γ1).

And in particular

Re⟨Ax, x⟩L2(Ω) = Re⟨γνTx2, γ0
1
ρx1⟩L2(Γ1).
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3. Stability Results

In this section we prove semi-uniform stability of the multidimensional wave
equation (1). We start with the definition of semi-uniform stability and strong
stability.

Definition 3.1. We say a strongly continuous semigroup (T (t))t≥0 on a Hilbert
space X is strongly stable, if for every x ∈ X

lim
t→∞

∥T (t)x∥X = 0.

We say a continuous semigroup (T (t))t≥0 on a Hilbert space X is semi-uniform
stable, if there exists a continuous monotone decreasing function f : [0,∞) → [0,∞)
with limt→∞ f(t) = 0 and

∥T (t)x∥X ≤ f(t)∥x∥dom(A)

for every x ∈ dom(A).

Remark 3.2. Note that in [2, sec. 3] semi-uniform stability is defined by ∥T (t)A−1∥ →
0, where A is the generator of (T (t))t≥0. It can be easily seen that this is equivalent
to our definition.

Moreover, in [2, sec. 3] it is explained that semi-uniform stability is a concept
between exponential stability and strong stability. In particular, semi-uniform
stability implies strong stability.

The already mentioned article [2] is an overview article on semi-uniform stability.
We remark that this notion is sometimes called differently, e.g., in [25] it is called
uniform stability for smooth data (USSD).

In the following we denote by A the operator given by (4) which is associated to
the port-Hamiltonian formulation of (1).

Our main result is the following theorem.

Theorem 3.3. The semigroup generated by A is semi-uniform stable.

The proof of Theorem 3.3 is given at the end of the section.

Remark 3.4. For the original system (1) strong stability of A translates to: There
is a we ∈ H1(Ω) such that for every initial value w0 ∈ H1(Ω), w1 ∈ L2(Ω) the
corresponding solution w satisfies

lim
t→∞

∥w(t, ·)− we(·)∥H1(Ω) = 0.

We will make use of a characterization of semi-uniform stability in [2, Theorem
3.4] to show that A, given by (4), generates a semi-uniform stable semigroup. As A
generates a bounded strongly continuous semigroup, by this theorem a sufficient
condition for semi-uniform stability is given by σ(A) ∩ iR = ∅. Here σ(A) denotes
the spectrum of the operator A. Hence, it suggests itself to analyse the spectrum of
A or its complement in C, the resolvent set.

We will show that calculating the resolvent set ρ(A) is related to a lossy Helmholtz
problem: Find a function u : Ω → C that satisfies

div T∇u− λ2ρu = f in Ω,

∂
∂Tνu+ λk−1u = g on Γ1,

(6)

where λ ∈ C \ {0}, f ∈ L2(Ω), g ∈ L2(Γ1), and k, ρ and T are the functions from
the beginning. A weak formulation of this problem can be derived by taking the
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inner product with v ∈ H1
Γ0
(Ω), apply an integration by parts formula for div-∇

and taking the boundary conditions into account:

⟨T∇u,∇v⟩L2(Ω) + λ2⟨ρu, v⟩L2(Ω) + λ⟨k−1γ0u, γ0v⟩L2(Γ1)

= ⟨−f, v⟩L2(Ω) + ⟨g, γ0v⟩L2(Γ1).
(7)

We define

b(u, v) := ⟨T∇u,∇v⟩L2(Ω) + λ2⟨ρu, v⟩L2(Ω) + λ⟨k−1γ0u, γ0v⟩L2(Γ1)

F (v) := ⟨−f, v⟩L2(Ω) + ⟨g, γ0v⟩L2(Γ1),

so that we can write (7) as

b(u, v) = F (v). (8)

A weak solution of (6) is a function u ∈ H1
Γ0
(Ω) that satisfies (8) for every v ∈ H1

Γ0
(Ω).

Lemma 3.5. Let u be a weak solution of the Helmholtz problem (6). Then u ∈
H1

Γ0
(Ω), T∇u ∈ H(div,Ω) and in particular,

div T∇u− λ2ρu = f in L2(Ω),

γνT∇u+ λk−1γ0u = g in L2(Γ1).

Proof. A weak solution u is by definition in H1
Γ0
(Ω) and satisfies b(u, v) = F (v) for

all v ∈ H1
Γ0
(Ω). If we choose v ∈ C∞

c (Ω), then all boundary integrals vanish. Hence,

⟨T∇u,∇v⟩L2(Ω) = ⟨−f, v⟩L2(Ω) − λ2⟨ρu, v⟩L2(Ω),

which implies that T∇u ∈ H(div,Ω) and div T∇u = f + λ2ρu. Using this and
choosing again v ∈ H1

Γ0
(Ω) in the weak formulation gives

⟨γνTu, γ0v⟩H−1/2(Γ1),H
1/2(Γ1)

+ λ⟨k−1γ0u, γ0v⟩L2(Γ1) = ⟨g, γ0v⟩L2(Γ1).

Therefore, γνTu has an L2(Γ1) representative and γνTu+ λk−1γ0u = g. ❑

Note that for y = [ y1
y2 ] ∈ XH there exists a ϕ ∈ H1

Γ0
(Ω) such that y2 = ∇ϕ. This

ϕ continuously depends on y2 by Poincaré’s inequality. If Γ0 = ∅, then we choose
ϕ ∈ H1(Ω)/R (ϕ ∈ H1(Ω) and

∫
Ω
ϕ dλ = 0) for uniqueness and continuity.

Lemma 3.6. Let A be the operator defined in (4). Then λ ∈ ρ(A)\{0} is equivalent
to: The system

div T∇u− λ2ρu = λy1 + λ2ρϕ in Ω,

∂
∂Tνu+ λk−1u = −λk−1ϕ on Γ1,

(9)

is weakly solvable for every y = [ y1
y2 ] ∈ XH, where ϕ is defined by ∇ϕ = y2 as

described above.

Proof. For λ ∈ ρ(A) \ {0} and y ∈ XH there exists an x ∈ dom(A) such that
(A− λ)x = y. Hence,

div Tx2 − λx1 = y1

∇ 1
ρx1 − λx2 = ∇ϕ ⇒ x2 = 1

λ∇( 1ρx1 − ϕ).

Substituting x2 in the first equation, multiplying by λ and adding λ2ρϕ on both
sides yields

div T∇( 1ρx1 − ϕ)− λ2ρ( 1ρx1 − ϕ) = λy1 + λ2ρϕ.

Since x ∈ dom(A) we have kγνTx2 + γ0
1
ρx1 = 0 which becomes

γνT∇( 1ρx1 − ϕ) + λk−1γ0(
1
ρx1 − ϕ) = −λk−1γ0ϕ.
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Hence, u := ( 1ρx1 − ϕ) is a weak solution of the system (9). On the other hand

if u is a weak solution of (9), then x :=
[
ρ(u+ϕ)

1
λ∇u

]
∈ dom(A) and (A− λ)x = y by

Lemma 3.5. ❑

Theorem 3.7. For every λ ∈ iR \ {0} the system (9) is weakly solvable.

Proof. We set λ = iη, where η ∈ R \ {0}.
Note that by

Re b(u, u) = ∥T 1/2∇u∥2L2(Ω) − η2∥ρ1/2u∥2L2(Ω),

b(·, ·) satisfies a Gårding inequality (see Definition C.1).
By Gårding’s inequality it is sufficient to show that b(·, ·) is a non-degenerated

sesquilinear form, (see e.g. Theorem C.2). Suppose there is a u ∈ H1
Γ0
(Ω) such that

b(u, v) = 0 for all v ∈ H1
Γ0
(Ω). Then b(u, u) = 0 and by separating the imaginary

part we have

iη⟨k−1γ0u, γ0u⟩L2(Γ1) = 0.

Hence, u ∈ H1
0(Ω). Moreover, u is a weak solution of the corresponding system to

b(u, v) = F̃ (v), where F̃ (v) := 0. By Lemma 3.5 for λ = iη, div T∇u+ η2ρu = 0 in
L2(Ω) and γν∇Tu = 0 in L2(Γ1). Summed up u satisfies

div T∇u+ η2ρu = 0,

γ0u = 0,

γνT∇u
∣∣
Γ1

= 0.

By the unique continuation principle (see e.g. [26, Theorem 1.7, Remark 1.8]), u
has to be 0 and consequently b(·, ·) is non-degenerated. ❑

Remark 3.8. The system (9) is also solvable for λ ∈ C+, but we already knew from
the dissipativity of A that C+ ⊆ ρ(A).

Corollary 3.9. iR \ {0} ∪ C+ ⊆ ρ(A).

Proof. This is a direct consequence of Lemma 3.6 and Theorem 3.7. ❑

Lemma 3.10. If λ ∈ iR is an eigenvalue of A, then a corresponding eigenvector x
satisfies γνTx2

∣∣
Γ1

= γ0
1
ρx1

∣∣
Γ1

= 0.

Proof. By Lemma 2.4 we have

Re⟨(A− λ)x, x⟩L2(Ω) = Re⟨Ax, x⟩L2(Ω) − Reλ⟨x, x⟩L2(Ω)

= Re⟨γνTx2, γ0
1
ρx1⟩L2(Γ1) − Reλ∥x∥2L2(Ω)

= −kRe⟨γ0 1
ρx1, γ0

1
ρx1⟩L2(Γ1) − Reλ∥x∥2L2(Ω)

= −k∥γ0 1
ρx1∥2L2(Γ1)

− Reλ∥x∥2L2(Ω).

If x is an eigenvector of λ ∈ iR, then this equation becomes

0 = −k∥γ0 1
ρx1∥2L2(Γ1)

,

which also gives γνTx2

∣∣
Γ1

= 0 by the boundary conditions. ❑

Lemma 3.11. Let A : dom(A) ⊆ XH → XH be the operator from the beginning.
Then 0 is not an eigenvalue of A.



8 B. JACOB AND N. SKREPEK

Proof. Let us assume 0 that is an eigenvalue of A and x be an eigenvector. Then
div Tx2 = 0 and ∇ 1

ρx1 = 0 and by Lemma 3.10 x satisfies γνTx2

∣∣
Γ1

= 0 = γ0
1
ρx1

∣∣
Γ1

.
Hence, for arbitrary f ∈ H1

Γ0
(Ω) we have

0 = ⟨div Tx2, f⟩L2 = −⟨Tx2,∇f⟩L2 ,

which implies Tx2 ⊥ ∇H1
Γ0
(Ω). Since by assumption Tx2 ∈ ∇H1

Γ0
(Ω) we conclude

x2 = 0. Finally, x1 = 0 by Poincaré’s inequality. Therefore, 0 cannot not be an
eigenvalue. ❑

Note that the assumption Γ1 ̸= ∅ is used in the next theorem.

Theorem 3.12. Let

X := ∇H1
Γ0
(Ω) ∩ {f ∈ H(div,Ω) | γνf

∣∣
Γ1

∈ L2(Γ1)}

with ∥f∥X :=
√
∥f∥2L2(Ω)n + ∥div f∥2L2(Ω) + ∥γνf∥2L2(Γ1)

.

Then X can be compactly embedded into L2(Ω)n.

Proof. Let (fn)n∈N be a bounded sequence in X, i.e., supn∈N∥fn∥X ≤ K ∈ R. By
assumption there exists a ϕn ∈ H1

Γ0
(Ω) such that fn = ∇ϕn for every n ∈ N. By

Poincaré’s inequality we have

∥ϕn∥H1(Ω) ≤ C∥∇ϕn∥L2(Ω) ≤ C∥fn∥X .

Hence, (ϕn)n∈N is a bounded sequence in H1(Ω). Moreover, (γ0ϕn)n∈N is a bounded
sequence in H1/2(∂Ω). By the compact embedding of H1(Ω) into L2(Ω) and H1/2(∂Ω)
into L2(∂Ω), there exists a subsequence (ϕn(k))k∈N that converges in L2(Ω) such
that also (γ0ϕn(k))k∈N converges in L2(∂Ω). W.l.o.g. we assume that this is already
true for the original sequence. By

∥fn − fm∥2L2(Ω)

= ⟨fn − fm,∇(ϕn − ϕm)⟩L2(Ω)

= −⟨div(fn − fm), ϕn − ϕm⟩L2(Ω) + ⟨γν(fn − fm), γ0(ϕn − ϕm)⟩L2(∂Ω)︸ ︷︷ ︸
⟨γν(fn−fm),γ0(ϕn−ϕm)⟩L2(Γ1)

≤ 2K∥ϕn − ϕm∥L2(Ω) + 2K∥γ0ϕn − γ0ϕm∥L2(Γ1)

→ 0,

we have that (fn)n∈N is a Cauchy sequence in L2(Ω)n and therefore convergent. ❑

Theorem 3.13. dom(A) can be compactly embedded into XH.

Proof. Note that dom(A) ⊆ XH and that ∥·∥XH is equivalent to ∥·∥L2(Ω)n+1 . We
regard dom(A) with ⟨x, y⟩A = ⟨x, y⟩XH + ⟨Ax,Ay⟩XH as inner product. Note that
dom(A) is a Hilbert space with the previous inner product. The induced norm can
be written as

∥x∥A =
√
∥x∥2XH

+ ∥T∇ 1
ρx1∥2L2 + ∥ 1

ρ div Tx2∥2L2 .

Note that ∥γνTx2∥L2(Γ1) is automatically bounded by C∥x∥A for some C > 0, since
∥γ0 1

ρx1∥H1/2(∂Ω) is bounded by C∥x∥A for some C > 0 and γνTx2

∣∣
Γ1

= −1
k γ0

1
ρx1

∣∣
Γ1

.
Let X be the space from Theorem 3.12. Then

Φ:

{
dom(A) → H1

Γ0
(Ω)×X,

x 7→
[

1
ρ 0

0 T

]
x,

is continuous. Moreover, both H1
Γ0
(Ω) and X can be compactly embedded into

L2(Ω) and L2(Ω)n, respectively. We denote this combined compact embeddeding by
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ι : H1
Γ0
(Ω)×X → L2(Ω)n+1. Hence, also dom(A) can be compactly embedded into

XH by Φ−1ιΦ. ❑

Corollary 3.14. The resolvent operators of A are compact, the spectrum of A
contains only eigenvalues and iR ∪ C+ ⊆ ρ(A).

Proof. By Theorem 3.13, dom(A) can be compactly embedded into XH, which
implies that every resolvent operator is compact. Hence, the spectrum of A contains
only eigenvalues. Since 0 is not an eigenvalue by Lemma 3.11, we conclude that
0 ∈ ρ(A). Moreover, by Corollary 3.9 also every other point on iR is in ρ(A). ❑

Finally we will prove Theorem 3.3.

Proof of Theorem 3.3. By Corollary 3.14 we have σ(A) ∩ iR = ∅. Therefore, as
announced in the beginning, [2, Theorem 3.4] implies the semi-uniform stability of
the semigroup generated by A. ❑

We conclude this section with an investigation of the strong stability of the
operator A0 given by (5), which is an extension of A and generates a strongly
continuous semigroup on L2(Ω)n+1.

Lemma 3.15. Let Ω ⊆ Rn be bounded and open with Lipschitz boundary, n ≥ 2.
Then the operator A0 (defined in (5)) has λ = 0 as an eigenvalue and thus, does
not generate a strongly stable semigroup.

Proof. Choose the components of x = [ x1
x2

] as

x1 = 0 and x2 = T−1

 ∂2ϕ
−∂1ϕ

0...
0

,
where ϕ is any non zero C∞

c (Ω) function. Then x2 ̸= 0 and div Tx2 = ∂1∂2ϕ −
∂2∂1ϕ = 0. Since ϕ has compact support, x satisfies the boundary conditions. Thus
A0 cannot generate a strongly stable semigroup, since the eigenvector x to λ = 0 is
a constant solution of the Cauchy problem. ❑

4. Conclusion

In this paper we showed semi-uniform stability of the multidimensional wave
equation equipped with a scattering passive feedback law. Further, we proved the
the corresponding port-Hamiltonian operator has a compact resolvent.

To get compact embeddings for the port-Hamiltonian operator of the wave
equation it is necessary to choose an adequate state space. This is a new aspect
that arises for spatial multidimensional port-Hamiltonian systems as in the one-
dimensional spatial setting the compact embedding is always given. It is likely that
most of the techniques presented in this article will translate for general linear port-
Hamiltonian systems on multidimensional spatial domains (see [24]) like Maxwell’s
equations and the Mindlin plate model. Probably the crucial tool will be a unique
continuation principle.

Moreover, there is an interesting link between the resolvent set of the port-
Hamiltonian operator of the wave equation and solvability of lossy Helmholtz
equations. Since in the theory of Helmholtz equations (especially in view of finite
element methods) a uniform bound of the solution operator is of interest, it might
be possible to use results from that theory to give explicit decay rates for the semi-
uniform stability or even obtain exponential stability under certain assumptions.
For constant coefficients we can find such estimates in [18, 19, 9]. There are some
recent works on these estimates with non constant coefficients [10, 11].
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Appendix A. Sobolev spaces

We want to recall the most important relations between certain Sobolev spaces
and boundary operators for our purpose. Details can be found in [20], [3], [4, ch. IX]
or in the appendix of [15]. Let Ω ⊆ Rn be open with bounded Lipschitz boundary.
We define

H1(Ω) := {x ∈ L2(Ω) | ∇x ∈ L2(Ω)n},
H(div,Ω) := {x ∈ L2(Ω)n | div x ∈ L2(Ω)},

where div x and ∇x are defined in a distributional sense. Here H1(Ω) is equipped
with the graph norm of ∇ and H(div,Ω) is equipped with the graph norm of div.
By C∞

c (Ω) we denote the space of functions on Ω that are infinitely differentiable
with compact support. The restriction mapping x 7→ x

∣∣
∂Ω

is defined for continuous
functions on Ω. There exists a continuous extension of this mapping from H1(Ω)
to L2(∂Ω). We define H1/2(∂Ω) as the image of this mapping equipped with the
range norm (and range inner product). Corresponding we define its (anti)dual space
H−1/2(∂Ω). For x, y ∈ C∞

c (Ω) we have a integration by parts formula:

⟨div x, y⟩L2(Ω) + ⟨x,∇y⟩L2(Ω) =
〈
ν · x

∣∣
∂Ω

, y
∣∣
∂Ω

〉
L2(∂Ω)

.

This can be continuously extended to x ∈ H(div,Ω) and y ∈ H1(Ω), if we replace
the L2(∂Ω) inner product by a dual pairing:

⟨div x, y⟩L2(Ω) + ⟨x,∇y⟩L2(Ω) = ⟨γνx, γ0y⟩H−1/2(∂Ω),H1/2(∂Ω),

where γ0 : H
1(Ω) → H1/2(∂Ω) is the boundary trace (extension of y 7→ y

∣∣
∂Ω

) and
γν : H(div,Ω) → H−1/2(∂Ω) is the extension of ν · x

∣∣
∂Ω

. Furthermore,

H1
Γ0
(Ω) :=

{
x ∈ H1(Ω)

∣∣∣ (γ0x)∣∣Γ0
= 0 in L2(∂Ω)

}
and H1/2(Γ1) is defined as ran γ0

∣∣
H1

Γ0
(Ω)

endowed with inner product from H1/2(∂Ω)

(for g ∈ H1/2(Γ1) we can say that g
∣∣
Γ0

= 0). We denote its (anti)dual space by
H−1/2(Γ1). Then there is the following integration by parts formula for x ∈ H(div,Ω)
and y ∈ H1

Γ0
(Ω)

⟨div x, y⟩L2(Ω) + ⟨x,∇y⟩L2(Ω) = ⟨γνx, γ0y⟩H−1/2(Γ1),H
1/2(Γ1)

.

We say γνx is in L2(Γ1), if there is an f ∈ L2(Γ1) such that

⟨γνx, γ0y⟩H−1/2(Γ1),H
1/2(Γ1)

= ⟨f, γ0y⟩L2(Γ1)

for all y ∈ H1
Γ0
(Ω). Clearly in this case we say γνx = f and we can write the

integration by parts formula as

⟨div x, y⟩L2(Ω) + ⟨x,∇y⟩L2(Ω) = ⟨γνx, γ0y⟩L2(Γ1).
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Appendix B. Solutions

In this section we will discuss a suitable solution concept for (1). We will regard
a solution w(·, ·) as a function in time mapping into spatial function space.

An integrated version of the PDE is

ρ(ζ)
∂

∂t
w(t, ζ)− ρ(ζ)w1(ζ) =

∫ t

0

div T (ζ)∇w(s, ζ) ds.

We will demand that a solution will satisfy this integrated version of the PDE.
If we assume that both

∫ t

0
div T (ζ)∇w(s, ζ) ds and div T (ζ)

∫ t

0
∇w(s, ζ) ds exist,

then they coincide and

ρ(ζ)
∂

∂t
w(t, ζ)− ρ(ζ)w1(ζ) = div T (ζ)

∫ t

0

∇w(s, ζ) ds.

This is a consequence of the closedness of div. For a classical solution (w ∈
C2(R+ × Ω) ∩ C1(R+ × Ω)) these integrals coincide.

We will also regard an integrated version of the boundary conditions:∫ t

0

d

ds
w(s, ζ) ds = −k

∫ t

0

ν · T∇w(s, ζ) ds

for all ζ ∈ Γ1. Again for classical solutions this can be manipulated to

w(t, ζ)− w(0, ζ) = −kν · T
∫ t

0

∇w(s, ζ) ds for all ζ ∈ Γ1,

γ0w(t, ·)
∣∣
Γ1

− γ0w(0, ·)
∣∣
Γ1

= −kγν

(
T

∫ t

0

∇w(s, ·) ds
)∣∣∣

Γ1

.

Definition B.1. Let w0 ∈ H1(Ω) and w1 ∈ L2(Ω). Then we say that w(·, ·) is a
solution of (1), if t 7→ w(t, ·) is C1(R+; L

2(Ω)) ∩ C0(R+; H
1(Ω)), and

ρ
d

dt
w(t, ·)− ρw1 = div T

∫ t

0

∇w(s, ·) ds,

w(0, ·) = w0,

d

dt
w(t, ·)

∣∣∣
t=0

= w1,

γ0w(t, ·)
∣∣
Γ0

= h,

γ0w(t, ·)
∣∣
Γ1

− γ0w0

∣∣
Γ1

= −kγν

(
T

∫ t

0

∇w(s, ·) ds
)∣∣∣

Γ1

,

for all t ∈ R+.

Proposition B.2. Let w is a solution of (1) in the sense of Definition B.1 and we

the solution of the equilibrium system (2). Then[
ρ ∂
∂tw(t, ·)

∇w(t, ·)−∇we

]
and T (t)

[
ρw1

∇w0 −∇we

]
coincide, where T is the semigroup generated by A.

On the other hand, let x1 denote the first component of the solution given by the
semigroup. Then

w(t, ·) :=
∫ t

0

1

ρ
x1(s) ds+ w0 + we

is a solution of (1) in the sense of Definition B.1.
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Remark B.3. If we regard the semigroup T0 generated by A0, we can even cancel
out ∇we and obtain [

ρ ∂
∂tw(t, ·)
∇w(t, ·)

]
= T0(t)

[
ρw1

∇w0

]
Theorem B.4. The system (2) is solvable for h ∈ H1/2(Γ0).

Proof. Let H ∈ H1(Ω) such that h = γ0H
∣∣
Γ0

. The weak formulation of (2) is: find
a w̃ ∈ H1

Γ0
(Ω) such that

⟨∇w̃,∇v⟩L2(Ω) = −⟨∇H,∇v⟩L2(Ω)

for all v ∈ H1
Γ0
(Ω). Then we = w̃ + H. By the Lax-Milgram theorem this is

solvable. ❑

Appendix C. Gårding Inequalities

In this section we want to show that there is a Fredholm alternative for sesquilinear
forms that are non-coercive, but satisfy a Gårding inequality. In [28] this concept is
presented in a less abstract way for differential operators.

Definition C.1. Let X0 and X1 be Hilbert spaces and K : X1 → X0 be a compact
linear operator.p A sesquilinear form b : X1 ×X1 → C satisfies a Gårding inequality,
if

Re b(u, u) ≥ C1∥u∥2X1
− C2∥Ku∥2X0

for all u ∈ X1.

In most applications K is a compact embedding, e.g. the embedding of H1(Ω)
into L2(Ω). Note that (by Lax-Milgram, e.g. [8]) for every bounded sesquilinear
form b(·, ·) on a Hilbert space there exists a bounded operator B : X1 → X1 such
that

b(u, v) = ⟨Bu, v⟩X1 for all u, v ∈ X1.

The operator B is injective if and only if b(·, ·) is non-degenerated.

Theorem C.2 (Fredholm alternative). Let b(·, ·) be a bounded sesquilinear form on
X1 that satisfies a Gårding inequality. If the corresponding operator B is injective
(b(·, ·) is non-degenerated), then B is bijective.

Proof. The sesquilinear form b satisfies the Gårding inequality

Re b(u, u) ≥ C1∥u∥2X1
− C2∥Ku∥2X0

for all u ∈ X1.

Hence, b̃(u, v) := b(u, v) + C2⟨Ku,Kv⟩X0 is coercive. The corresponding operator
B̃ is given by B + C2K

∗K. By the Lax-Milgram theorem B̃ is bijective. Note that

B = B̃ − C2K
∗K = B̃(I− B̃−1C2K

∗K).

The injectivity of B implies that 1 is not an eigenvalue of B̃−1C2K
∗K and since

B̃−1C2K
∗K is compact, it is surjective. Consequently B is also surjective. ❑
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