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Abstract

We propose a new interconnection relation for infinite-dimensional port-
Hamiltonian systems that enables the coupling of ports with different spatial
dimensions by integrating over the the surplus dimensions. To show the practical
relevance, we apply this interconnection to a model system of an actively cooled
gas turbine blade. We also show that this interconnection relation behaves well
with respect to a discretization in finite element space, ensuring its usability for
practical applications.
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1. Motivation

Scientific models are inherently approximations of reality, and removing
unnecessary details can greatly simplify the resulting model. These simplifications
often involve reducing the spatial dimensions of the model: A fluid flowing
through a pipe is often modelled in 1D rather than using the full 3D Navier-
Stokes equations. Electronic components such as capacitors and resistors are
commonly modelled as 0D elements. When the interfaces of the subsystems have
the same dimension, there are formalisms such as Port-Hamiltonian Systems
(PHS) that treat the interconnection of these systems in a fairly general way.
For more details on the background of port-Hamiltonian systems we refer the
reader to [1–3, 10].

However, it becomes difficult when the subsystems have different spatial
dimensions. For example, modeling a one-dimensional pipe flow that interacts
with its environment via the pipe walls requires coupling a 1D interface (the
fluid flow) with a 2D interface (the pipe walls). Coupling the pipe walls to a
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(a) 3D view (b) Top view

Figure 1: Simple model of a cooled turbine blade, with the cooling channel in blue.

lumped-parameter model for the temperature of the room in which they are
located requires coupling the 2D pipe surface to a zero-dimensional system.

In the following sections, we will attempt to formulate an energy-conserving
connection of two port-Hamiltonian systems where the connected ports do not
have the same spatial dimension.

2. Motivating Example: Cooled Gas Turbine Blade

Consider the heat flow in a gas turbine blade cooled by an internal cooling
channel, as shown in Figure 1. We can model this as two interconnected
subsystems: the heat conduction within the metal of the turbine blade and the
coolant flow within the cooling channel. In order to couple these systems, we
introduce the following decomposition of the boundary ∂Ω of the turbine plate
Ω. As displayed in Figure 1 the boundary can be split into Γint the boundary to
the cooling channel and exterior boundary Γext, i.e. ∂Ω = Γint ∪̇ Γext. For more
information and a discussion of a greatly simplified version of this system, see
[4].

Heat conduction in the metal is, of course, modelled by a heat equation:

ρc
∂Th
∂t

(x, t) = div
(
λ gradTh(x, t)

)
. (1)

The formulation as a port-Hamiltonian system closely follows [8], choosing the
thermal energy U as Hamiltonian

U(t) =

∫
Ω

q
(
s(x, t)

)
dx, (2)

and considering the thermal energy density q as a function of the entropy density
s such that the thermodynamic relation δsU = dq

ds = Th is satisfied. Taking s

as a state variable, we obtain the usual flow fs = ∂s
∂t and the corresponding

effort es = Th (the power conjugated quantities). As additional flows and efforts
we choose the entropy flux eΦ = ΦS , as well as fΦ = − grad(Th), fσ = Th and
eσ = − grad( 1

Th
)ΦU with the heat flux ΦU . Thus, we obtain the port-Hamiltonian
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system fs
fΦ
fσ

 =

 0 −div −1
− grad 0 0

1 0 0

es
eΦ
eσ

 . (3)

Since (3) has one algebraic equation, we add the two closure relations

eseΦ = λfΦ and fΦeΦ = −fσeσ, (4)

the former being Fourier’s law and the latter expressing the relation between
heat flux ΦU and entropy flux ΦS . The system (3)–(4) is complemented with the
following boundary conditions modelling the energy flow across the boundary

input: u1 = Th|Γint , u2 = Th|Γext (5)

and output: v1 = −(ΦS · n⃗)|Γint , v2 = −(ΦS · n⃗)|Γext (6)

with n⃗ being the surface normal vector.
The coolant flow in the cooling channel is modelled as a 1D compressible fluid.

This is consistent with common practice in engineering, since cooling channels in
practice are small, irregularly shaped, and exhibit highly turbulent flow, making
full 3D flow models infeasible for practical applications and requiring the use of
1D parameter models, such as those presented in [6]. A 1D model also allows
us to use the formulation of irreversible PHS with boundary control presented
in [7]. We choose the specific volume φ = 1/ρ, the velocity v and the entropy
density s as state variables, and the Hamiltonian

H(v, φ, s) =

∫ b

a

(1
2
v2 + u(φ, s)

)
dz, (7)

where the internal energy density u fulfils the Gibbs relation du = −p dφ+Tc ds.
We can then formulate the quasi-Hamiltonian system∂φ

∂t
∂v
∂t
∂s
∂t

 =

 0 ∂
∂z 0

∂
∂z 0 − fv

T

0 fv
T 0

−p
v
Tc

+

0
0
1

w1(z, t), (8)

y1 =
(
0 0 1

)−p
v
Tc

 = Tc, (9)

with the appropriate boundary ports w2, y2 for inflow and outflow of the cooling
channel. This system is an infinite-dimensional irreversible port-Hamiltonian
system as defined in [7, Definition 1].

Coupling the two systems using the usual interconnections for PHS, like
Robin-type heat flow conditions, does not work because the spatial dimensions do
not match: The boundary port of the heat equation is 2D, while the distributed
port of the cooling channel is only 1D. We need a new interconnection to
compensate for this dimensional mismatch. We will do this by introducing an
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additional operator A and its adjoint. This is displayed in Figure 2. The coupling
ports can be seen as an own port-Hamiltonian system or equivalently as a Dirac
structure, as we will show in the next section. However, going into the functional
analytic details of this interconnection is beyond the scope of this work. The
difficulty is to handle the fractional Sobolev spaces on the boundary Γint that
appear as input and output spaces of the 3D heat equation.

Note that we are aiming to interconnect boundary ports (from the 3D model)
with distributed ports (from the 1D model)

Heat 3D

Heat 1D

−AA∗

y1

u1 v1

w1

u2 v2

y2w2

Figure 2: Diagram of the coupling

3. Proposition: Mixed-Dimensional Geometric Coupling

Definition 3.1 (Dirac structure [5]). Let F be a linear space, E its dual and
⟨·, ·⟩ : E × F → R their dual product. Further let

⟪
(
e1
f1

)
,

(
e2
f2

)
⟫ = ⟨e1, f2⟩+ ⟨e2, f1⟩

(
e1
f1

)
,

(
e2
f2

)
∈ E × F . (10)

Then D ⊆ (E × F) is a Dirac structure if D = D⊥ with

D⊥ = {a ∈ E × F | ⟪a, b⟫ = 0 ∀ b ∈ D}. (11)

Let us remark that E and F here not only contain the storage ports, but
can also contain dissipative ports and external ports – which, in the case of
Stokes-Dirac structures contain distributed ports and boundary ports. The most
relevant difference between a Dirac structure and a Stokes-Dirac structure is
the presence of a boundary port, which regulates the flow of energy across the
boundary and takes the place of the boundary conditions in “normal” PDEs.
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Theorem 3.2. Let Γ1 ⊆ Rn compact, Γ2 ⊂ Rm compact and Γ := Γ1 × Γ2 ⊆
Rn+m. Further let F = L2(Γ1)× L2(Γ) and E = F∗ its dual. Note that we have
for x ∈ Γ the decomposition x = (x1, x2) with x1 ∈ Γ1 and x2 ∈ Γ2. Finally, let

A :

{
L2(Γ) → L2(Γ1),

u 7→
∫
Γ2
u(·, x2) dx2,

(12)

and the embedding

B :

{
L2(Γ1) → L2(Γ),

v 7→ v.
(13)

The previous operator has to be understood as (Bv)(x1, x2) = v(x1). Then

J :

 E → F ,

e 7→
(
0 −A
B 0

)(
e1
e2

)
,

(14)

induces a Dirac structure

D =
{
(e, f) ∈ E × F | f = Je

}
. (15)

Note that u ∈ L2(Γ) implies u(·, x2) ∈ L2(Γ1) for almost every x2 ∈ Γ2.
Moreover, by the triangle inequality and Cauchy-Schwarz inequality

∥Au∥2L2(Γ1)
=

∫
Γ1

∣∣∣∣∫
Γ2

u(x1, x2) dx2

∣∣∣∣2 dx1 ≤
∫
Γ1

(∫
Γ2

1 · |u(x1, x2)|dx2
)2

dx1

C.S.
≤ |Γ2|

∫
Γ1

∫
Γ2

|u(x1, x2)|2 dx2 dx1 = |Γ2|∥u∥2L2(Γ), (16)

where |Γ2| denotes the measure of Γ2. Hence, the operator A is well-defined.
Note that this holds true for any finite measure on Γ2. In particular we will later
use surface measures.

Proof. Determine the adjoint operator of B: For f ∈ L2(Γ), v ∈ L2(Γ1) we have

⟨f,Bv⟩L2(Γ) =

∫
Γ1

∫
Γ2

f(x1, x2)v(x1) dx2 dx1 =

∫
Γ1

(∫
Γ2

f(x1, x2) dx2

)
v(x1) dx1

=

〈∫
Γ2

f(·, x2) dx2, v
〉

L2(Γ1)

= ⟨B∗f, v⟩L2(Γ1)
= ⟨Af, v⟩L2(Γ1)

.

(17)

Since A = B∗ holds, J is skew-adjoint and D is a Dirac structure [9].

4. Coupled Example System

To apply the coupling described in Section 3 to the system of Section 2, we
recall the splitting of the boundary ∂Ω of the 3D heat equation domain Ω into an
external part Γext, which connects to the outside of the blade and is disregarded
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Γ2

Γ1

Figure 3: Illustration of Γint
∼= Γ1 × Γ2

here, and an internal part Γint which denotes the wall of the cooling channel and
will be coupled to the coolant flow.

As the cooling channel is modelled as a tube, it can be decomposed into
Γint

∼= Γ1 × Γ2 as in Theorem 3.2, with Γ1 containing the axial coordinate
(along the flow direction) and Γ2 the azimuthal coordinate, i.e. describing the
circumference, see Figure 3. The temperature Th and Tc, an intensive quantity, of
the points that are in contact with each other is the same, while the entropy flux
ΦS , an extensive quantity, is integrated and has the expected sign change. Based
on this physical considerations we choose the following interconnection. Note
that y1 is the output that corresponds to the cooling channel that is modelled
by the 1-D system. Hence, we can say the domain of y1 is Γ1

u1 = Th
∣∣
Γint

= BTc = By1 and w1 =

∫
Γ2

ΦS(x) · n⃗ dx2 = −
∫
Γ2

v1 dx2︸ ︷︷ ︸
=Av1

, (18)

This interconnection has exactly the form given in Theorem 3.2. Since it is an
energy preserving interconnection, the coupled system is a (quasi-)Hamiltonian
system and would be a port-Hamiltonian system if both sub-systems were PHS.

5. Finite Element Discretization

The interconnection proposed in Section 3 can be easily discretized with a
finite element discretization. The result will then be a finite-dimensional Dirac
structure, as we will see in this section.

Let us assume that we have finite element discretizations for both sub-systems,
with ψi the basis functions on the boundary of the higher-dimensional system
(the heat equation in our example), and χi the basis functions of the lower-
dimensional system (the compressible cooling fluid in our example). We can
then approximate the input u and output v of the first system, and the input w
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and output y of the second system as

u ≈
∑
i

ψi(x)ui(t) = Ψ⊤(x)u(t), v ≈
∑
i

ψi(x)vi(t) = Ψ⊤(x)v(t),

w ≈
∑
i

χi(x1)wi(t) = X⊤(x1)w(t), y ≈
∑
i

χi(x1)yi(t) = X⊤(x1)y(t).
(19)

Remembering that x = (x1, x2)
⊤ and applying these approximations to the

continuous interconnection relations of Equation (18) results in

X⊤(x1)w(t) = −
∫
Ω2

Ψ⊤(x)v(t) dx2, and Ψ⊤(x)u(t) = X⊤(x1)y(t). (20)

We now take the weak form of Equation (20) to obtain the discretized forms of
the interconnection relations

Mχw(t) =

∫
Γ1

X(x1)X
⊤(x1)w(t) dx1 = −

∫
Γ1

X(x1)

∫
Γ2

Ψ⊤(x)v(t) dx2 dx1

= −
∫
Γ1

X(x1)Ψ̂
⊤(x1)v(t) dx1 = −Dχv(t)

(21)

and

Mψu(t) =

∫
Γ

Ψ(x)Ψ⊤(x)u(t) dx =

∫
Γ

Ψ(x)X⊤(x1)y(t) dx

=

∫
Γ1

(∫
Γ2

Ψ(x) dx2

)
X⊤(x1)y(t) dx1

=

∫
Γ1

Ψ̂(x1)X
⊤(x1)y(t) dx1 = Dψy(t).

(22)

Since Dψ = D⊤
χ , the discretized interconnection relation(

Mχ 0
0 Mψ

)(
u(t)
w(t)

)
=

(
0 −Dχ

Dψ 0

)(
v(t)
y(t)

)
(23)

represents a Dirac structure.

Remark 1. The integration over Γ2 will not expand the support of the basis
functions ψ̂i in x1-direction. Therefore, the matrix Dχ will still be sparse,
although less sparse than the matrix Mχ.

6. Conclusion

It is possible to couple port-Hamiltonian systems of different spatial dimen-
sions if the interconnecting ports do not have the same spatial dimension. The
proposed interconnection structure forms a Dirac structure and thus ensures
that the resulting overall system again forms a port-Hamiltonian system.
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Application to an example system has shown that the interconnection has
practical use and a physically meaningful interpretation when the ports consist
of both extensive and intensive variables. This is usually the case for physically
motivated port-Hamiltonian systems, but cannot be guaranteed in general.

Finally, we showed that the interconnection behaves well with respect to
the discretization in finite element space, leading to a finite-dimensional Dirac
structure.
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