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Abstract. In the present note a spectral theorem for a finite tuple of
pairwise commuting, self-adjoint and definitizable bounded linear oper-
ators A1, . . . , An on a Krein space is derived by developing a functional
calculus φ �→ φ(A1, . . . , An) which is the proper analogue of φ �→ ∫

φ dE
in the Hilbert space situation with the common spectral measure E for
a finite tuple of pairwise commuting, self-adjoint bounded linear opera-
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1. Introduction

In the Hilbert space setting the spectral theorem for bounded linear, self-
adjoint operators is a well-known functional analysis result. The same is true
for normal operators on Hilbert spaces. Note that, looking at the real and
imaginary part, a normal operator corresponds to a pair of commuting self-
adjoint operators. For a finite tuple A1, . . . , An of self-adjoint operators on a
Hilbert space we also have a spectral theorem; see for example [1] or [8]. In
fact, there exists a unique compactly supported spectral measure on R

n such
that Aj =

∫
Rn sj dE(s), where s denotes a vector in R

n and sj denotes its
j-th entry.

For a bounded operator on a Krein space the condition being self-adjoint
is not rich enough in order to derive some sort of spectral theorem. Assuming
in addition definitizability, a spectral theorem could be derived by Heinz
Langer; cf. [7]. Here a self-adjoint bounded linear operator A on a Krein
space (K, [., .]) is called definitizable if there exists a so-called definitizing
polynomial q(z) ∈ R[z]\{0} such that [q(A)x, x] ≥ 0 for all x ∈ K. This
theorem became an important starting point for various spectral results. The
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main difference to self-adjoint operators on Hilbert spaces is the appearance
of a finite number of critical points, where the spectral projections no longer
behave like a measure.

Focusing not on spectral measures but on the corresponding functional
calculus the spectral theorem for a definitizable self-adjoint operator on a
Krein space was also considered in a somewhat more general form in [6].
The methods used in this work proved to be fruitful enough in order to
derive a spectral theorem for a definitizable normal operator in [4], where
a normal operator N on a Krein space K was called definitizable if its real
part A1 := 1

2 (N + N+) and its imaginary part A2 := 1
2i (N − N+) are both

definitizable in the above sense. Here N+ denotes the adjoint of N with
respect to the Krein space inner product [., .]. Using methods from ring theory
a spectral theorem for a normal operator satisfying a more general concept
of definitizability was proved in [5].

In the present paper we derive a spectral theorem for a finite tuple of
pairwise commuting, self-adjoint and definitizable bounded linear operators
A = (A1, . . . , An) on a Krein space generalizing the ideas from [4]. This will
be done in terms of a functional calculus generalizing the functional calculus
φ �→ ∫

φ dE in the Hilbert space case.
In the preliminary Sect. 2 we will recall some facts about the spectrum

of a finite tuple of elements of a Banach algebra. Then we will see that the
spectrum of a finite tuple of normal operators on a Hilbert space coincides
with the support of the common spectral measure of this tuple of normal
operators.

Denoting by qj(z) the definitizing real polynomials for Aj we build a
Hilbert space H which is continuously and densely embedded in the given
Krein space K. Denoting by T : H → K the adjoint of the embedding, we
have TT+ =

∑n
j=1 q(Aj). Then we use the ∗-homomorphism1 Θ : (TT+)′ (⊆

Lb(K)) → (T+T )′ (⊆ Lb(H)), C �→ (T × T )−1(C), studied in [6], in order
to drag Aj ∈ (TT+)′ ⊆ Lb(K) into (T+T )′ ⊆ Lb(H). The resulting tuple
Θ(A) = (Θ(A1), . . . ,Θ(An)) consists of self-adjoint operator on a Hilbert
space and therefore has a spectral measure Δ �→ E(Δ) on the Borel subsets
of Rn.

The proper family F of functions suitable for the aimed functional
calculus are bounded and measurable functions on the subset σ(Θ(A)) ∪∏n

j=1 q−1
j {0} of C

n. The functions φ ∈ F assume values in C on σ(Θ(A))
\∏n

j=1 q−1
j {0} and satisfy φ(z) ∈ C

I(z) where I(z) is finite and C
I(z) pro-

vided with proper operations constitutes a ∗-algebra. Moreover, a φ ∈ F
satisfies a growth regularity condition at all points from R

n ∩ ∏n
j=1 q−1

j {0}
which are not isolated in σ(Θ(A)) ∪ ∏n

j=1 q−1
j {0}.

1Given a Krein space X we denote by Lb(X) the Banach algebra of all linear and bounded
operators on X additionally provided with the Krein space adjoint B �→ B+.
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Any polynomial s(z1, . . . , zn) ∈ C[z1, . . . , zn] can be seen as a function
sM ∈ F and any φ ∈ F can be written as

φ(z) = sM(z) + g(z) ·
⎛

⎝
n∑

j=1

(qj)M(z)

⎞

⎠ , z ∈ σ(Θ(A)) ∪
n∏

j=1

q−1
j {0}, (1.1)

for a suitable polynomial s ∈ C[z1, . . . , zn] and a bounded and measurable
function g : σ(Θ(A)) ∪ ∏n

j=1 q−1
j {0} → C vanishing on

∏n
j=1 q−1

j {0}.
We then define φ(A) := s(A1, . . . , An) + T

∫
σ(Θ(A))

g dE T+, show that
this operator does not depend on the actual decomposition (1.1) and that φ �→
φ(A) indeed constitutes a ∗-homomorphism. Providing F with an appropriate
norm this ∗-homomorphism is continuous. Finally, we show that for A =
(A1, A2) the functional calculus φ �→ φ(A) from the present note coincides
with the functional calculus derived in [4] for the normal operator N =
A1 + iA2.

2. Joint Spectrum of Finite Tuples

Given a unital and commutative Banach algebra A with unit e we want to
introduce the following notation. For a = (aj)n

j=1 ∈ An and λ = (λj)n
j=1 ∈ C

n

we define (a − λ) := (aj − λje)n
j=1, for b ∈ An we define a · b =

∑n
j=1 ajbj

and for a mapping ψ defined on A we set ψ(a) := (ψ(aj))n
j=1.

Denoting by M the maximal ideal space of A the spectrum of the tuple
a ∈ An was introduced as

σ(a) = {φ(a) ∈ C
n : φ ∈ M}. (2.1)

In particular, σ(a) 
= ∅. Using well-known results from Gelfand Theory, we
see that

σ(a) = {λ ∈ C
n : I(a − λ) 
= A},

where I(a − λ) denotes the smallest Ideal containing all entries of a − λ. As
A is commutative, I(a − λ) coincides with {b · (a − λ) : b ∈ An}.

Since an Ideal I satisfies I 
= A if and only if e 
∈ I, we obtain

σ(a) = {λ ∈ C
n : (a − λ) 
∈ Inv(An)}, (2.2)

where Inv(An) is the set of tuples c ∈ An such that there exists a tuple
b ∈ An satisfying b · c = e. Since (cj)m

j=1 ∈ Inv(Am) implies c ∈ Inv(An) for
m ≤ n, we obtain

λ ∈ σ(a) ⇒ (λj)m
j=1 ∈ σ

(
(aj)m

j=1

)
. (2.3)

Definition 2.1. Let N = (Nj)n
j=1 ∈ Lb(H)n, where N1, . . . , Nn ∈ Lb(H) are

pairwise commuting operators on a Hilbert space H. Then we define σ(N) by
(2.1) considering N1, . . . , Nn as elements of the commutative unital algebra
N ′′ := {N1, . . . , Nn}′′, where {N1, . . . , Nn}′′ denotes the bi-commutant of
{N1, . . . , Nn}, i.e. the set of all operators on H commuting with all operators
that commute with N1, . . . , Nn. ♦
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For an n-tuple of normal operators on a Hilbert space a Spectral The-
orem is well-known; see for example [8, Theorem 5.21]:

Theorem 2.2. Let N = (Nj)n
j=1 ∈ Lb(H)n, where N1, . . . , Nn ∈ Lb(H) are

normal and pairwise commuting operators on a Hilbert space H. Then there
exists a unique common spectral measure E defined on the Borel-subsets of
C

n such that

Nj =
∫

Cn

zj dE(z), (2.4)

where zj is the j-th entry of z ∈ C
n. Moreover, an operator S ∈ Lb(H)

commutes with all N1, . . . , Nn if and only if S commutes with E(Δ) for all
Borel-subsets Δ ⊆ C

n.

The final assertion in the previous result can be shown with the help
of Fuglede’s Theorem and the Riesz–Markov Theorem together with the fact
that the set of all polynomials in the variables z1, . . . , zn, z̄1, . . . , z̄n are dense
in C(suppE,C) with respect to ‖.‖∞.

Remark 2.3. The support suppE of a spectral measure E as in Theorem 2.2
is defined as the set of points λ ∈ C

n such that E(U) 
= 0 for all measurable
neighbourhoods U of λ in C

n. It is easy to check that supp E is a closed subset
of Cn. By [8, Proposition 5.24, (ii)] the support suppE is also bounded, and
hence, supp E is compact. For bounded and measurable functions φ : Cn → C

we always have
∫

Cn

φ dE =
∫

Cn

φ · 1supp E dE.

By [8, Theorem 5.23] the spectral measure E in Theorem 2.2 is supported
on R

n, i.e. suppE ⊆ R
n, if N1, . . . , Nn are all self-adjoint. Therefore, the

integral in (2.4) can be taken over Rn instead of Cn and E can be considered
as a spectral measure on the Borel-subsets of Rn. ♦

The following result is known. In the absence of a proper reference we
also bring its proof.

Theorem 2.4. Let N = (Nj)n
j=1 ∈ Lb(H)n, where N1, . . . , Nn ∈ Lb(H) be

pairwise commuting normal operators on a Hilbert space H, and denote by E
their common spectral measure. Then we have

σ(N) = suppE,

where λ ∈ suppE if and only if E(U) 
= 0 for all measurable neighbourhoods
U of λ in C

n.

Proof. If λ ∈ suppE, then E(Uε(λ)) 
= 0 for any ε > 0, where Uε(λ) denotes
the open ball of radius ε around λ in C

n with respect to the Euclidean norm.
In particular, there exists an fε ∈ H\{0} with fε = E(Uε(λ))fε. We obtain

‖(Nj − λj)fε‖2 =
∫

Cn

|zj − λj |2 d(E(z)fε, fε) =
∫

Uε(λ)

|zj − λj |2 d(E(z)fε, fε)

≤ ε2‖fε‖2
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for all j ∈ {1, . . . , n}. For arbitrary B ∈ (N ′′)n this gives

‖B · (N − λ)fε‖ =

∥
∥
∥
∥
∥
∥

n∑

j=1

Bj(Nj − λj)fε

∥
∥
∥
∥
∥
∥

≤ ε ·
⎛

⎝
n∑

j=1

‖Bj‖
⎞

⎠ · ‖fε‖.

Taking into account that ε > 0 can be arbitrarily small, we see that B ·(N−λ)
cannot be boundedly invertible. In particular, B ·(N −λ) 
= I which according
to (2.2) yields λ ∈ σ(N).

On the other hand if λ ∈ C
n\ suppE, then we can define B := (Bj)n

j=1,
where

Bj :=
∫

Cn

1supp E(z)
‖z − λ‖2

· (zj − λ) dE(z),

because the integrand is bounded and measurable, where w = (wj)n
j=1. From

the final assertion in Theorem 2.2 we infer B ∈ (N ′′)n. By

B · (N − λ) =
n∑

j=1

∫

Cn

1supp E(z)
‖z − λ‖2

(zj − λj) · (zj − λj) dE(z)

=
∫

Cn

1supp E(z)
‖z − λ‖2

·
n∑

j=1

|zj − λj |2 dE(z)

=
∫

Cn

1supp E dE = I

we conclude from (2.2) that λ 
∈ σ(N). �
The uniqueness assertion in Theorem 2.2 yields the following description

of the unique common spectral measure for a shortened tuple (Nj)m
j=1.

Theorem 2.5. With the notation of Theorem 2.2 let m ∈ N with m ≤ n. The
unique common spectral measure from Theorem 2.2 for the tuple (Nj)m

j=1 is
given by

E(π−1(Δ))

for all Borel-subsets Δ ⊆ C
m, where π : Cn → C

m denotes the projection on
the first m components.

In particular, the support of the common spectral measure for the tuple
(Nj)m

j=1 coincides with π(suppE).

3. Multiple Embeddings

In the present section we consider a Krein space (K, [., .]). The following
straight forward result implicitly appears in many papers; see for example
[4]. For a more detailed discussion and for unitarily equivalent spaces see [2].

Lemma 3.1. Let D : K → K be a bounded and linear operator which is posi-
tive, i.e. [Dx, x] ≥ 0 for all x ∈ K. Then there exists a Hilbert space H and
an injective, bounded and linear mapping T : H → K such that2 TT+ = D.

2Here T+ : K → H denotes the adjoint of T with respect to the Krein space product [., .]
on K and the Hilbert space product on H.
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Proof. Since D is positive, 〈., .〉 := [D.,.] defines a positive semidefinite inner
product on K. Factorizing K by its isotropic part K〈◦〉 = {x ∈ K : 〈x, y〉 =
0 for all y ∈ K} we obtain the pre-Hilbert space K/K〈◦〉 provided with the
well-defined positive definite inner product 〈x + K〈◦〉, y + K〈◦〉〉 := 〈x, y〉 for
x, y ∈ K. By

ι :
{K → K/K〈◦〉,

x �→ x + K〈◦〉,

we denote the factor mapping. Define (H, 〈.,.〉) to be the Hilbert space com-
pletion of (K/K〈◦〉, 〈., .〉) and regard ι as a mapping into H. From

‖ιx‖2 = 〈ιx, ιx〉 = [Dx, x]K ≤ ‖D‖‖x‖2, x ∈ K,

we conclude the continuity of ι. Here the norm on the right hand side is
induced by an arbitrary Hilbert space inner product on K which is compatible
with [.,.]. It is well-known that Krein space adjoint T := ι+ of ι, satisfying
[Tx, y] = 〈x, ιy〉 for all x ∈ H and y ∈ K, constitutes a linear and bounded
operator T : H → K.

By construction ran ι is densely contained in H, which implies ker T =
ker ι+ = (ran ι)〈⊥〉 = {0}. Hence, T is injective. Moreover, by definition, for
x, y ∈ K we have

[TT+x, y] = 〈T+x, T+y〉 = 〈ιx, ιy〉 = 〈x, y〉 = [Dx, y].

Therefore, TT+ = D. �

Remark 3.2. In Lemma 3.1 we have H = {0} and T = 0 if D = 0. ♦

Definition 3.3. If bounded linear and positive operators D1, . . . , Dm ∈ Lb(K)
are given, then we can apply Lemma 3.1, and obtain for each j = 1, . . . , m a
Hilbert space Hj and a bounded linear and injective Tj : Hj → K such that
TjT

+
j = Dj .

Since for any non-empty subset M ⊆ {1, . . . , m} the sum
∑

j∈M Dj

also constitutes a positive operator, we even obtain a Hilbert space HM and
a bounded linear and injective TM : HM → K such that

TMT+
M =

∑

j∈M

Dj .

Clearly, H{j} = Hj and T{j} = Tj for j = 1, . . . , m. ♦

Lemma 3.4. If M1, . . . ,Mr are non-empty and pairwise disjoint subsets of
{1, . . . ,m} and if we set M :=

⋃r
k=1 Mk, then

TMT+
M =

r∑

k=1

TMk
T+

Mk
. (3.1)

Moreover, employing the notation from Definition 3.3, for k = 1, . . . , r there
exist injective contractions RMk/M : HMk

→ HM such that TMk
= TMRMk/M

and
r∑

k=1

RMk/MR∗
Mk/M = IHM

.
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TMr−1RMr
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Figure 1. Setting of Lemma 3.4

Proof. Equation (3.1) clearly follows from TMT+
M =

∑
j∈M Dj =

∑r
s=1∑

j∈Ms
Dj =

∑r
s=1 TMs

T+
Ms

. For x ∈ K we then conclude

‖T+
Mx‖2

HM
= 〈T+

Mx, T+
Mx〉HM

= [TMT+
Mx, x] =

r∑

s=1

[TMs
T+

Ms
x, x]

=
r∑

s=1

〈T+
Ms

x, T+
Ms

x〉HMs
=

r∑

s=1

‖T+
Ms

x‖2
HMs

≥ ‖T+
Mk

x‖2
HMk

for every k = 1, . . . , r. This inequality guarantees that

Bk :
{

ran T+
M → ran T+

Mk
,

T+
Mx �→ T+

Mk
x,

is a well-defined, linear and contractive mapping.
Since TM is injective, we have (ran T+

M )〈⊥〉HM = ker TM = {0}. Hence,
ranT+

M is dense in HM . The same is true for ranT+
Mk

in HMk
. We conclude

that Bk is densely defined, and hence, its closure Bk is an everywhere on
HM defined linear contraction with dense range contained in HMk

. Thus, its
adjoint RMk/M := (Bk)∗ constitutes an injective linear contractions RMk/M :
HMk

→ HM .
By definition we have R∗

Mk/MT+
M = BkT+

M = T+
Mk

, which leads to
TMRMk/M = TMk

. By (3.1) we have

TM (IHM
)T+

M = TMT+
M =

r∑

k=1

TMk
T+

Mk
=

r∑

k=1

TMRMk/M (TMRMk/M )+

= TM

(
r∑

k=1

RMk/MR∗
Mk/M

)

T+
M .

Together with the injectivity of TM and the density of ranT+
M this yields

IHM
=

∑r
k=1 RMk/MR∗

Mk/M (Fig. 1). �

Remark 3.5. If r = 1 and M1 = M in Lemma 3.4, then we realize from the
previous proof that RM,M is just the identity mapping on HM . ♦
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For any Hilbert or Krein space V and any B ∈ Lb(V) by B′ we denote
the commutant of {B}, i.e. B′ = {C ∈ Lb(V) : CB = BC}.

Definition 3.6. With the assumptions and notation from Definition 3.3 and
from Lemma 3.4 for non-empty M,N ⊆ {1, . . . , m} with N ⊆ M we define

ΘM : (TMT+
M )′

︸ ︷︷ ︸
⊆Lb(K)

→ (T+
MTM )′

︸ ︷︷ ︸
⊆

Lb(HM )

by3 ΘM (B) = (TM × TM )−1(B) = T−1
M BTM and

ΓN/M : (RN/MR∗
N/M )′

︸ ︷︷ ︸
⊆Lb(HM )

→ (R∗
N/MRN/M )′

︸ ︷︷ ︸
⊆Lb(HN )

by ΓN/M (C) = (RN/M × RN/M )−1(C) = R−1
N/MDRN/M . ♦

Remark 3.7. The mapping ΘM (ΓN/M ) is exactly the mapping Θ in [6, The-
orem 5.8] corresponding to the mappings T = TM (T = RN/M ). Therefore,
ΘM and ΓN/M constitute ∗-algebra homomorphisms.

The results from [6] dealing with the mapping Θ could also be shown
with the help of the lifting procedure for example discussed in [3, Lemma 2.1].
Probably this lifting procedure allows smoother verifications of the results
from [6]. ♦

If M1, . . . ,Mr,M ⊆ {1, . . . , m} are as in Lemma 3.4, then we conclude
from (3.1) that

r⋂

k=1

(
TMk

T+
Mk

)′ ⊆ (
TMT+

M

)′
.

Therefore, the following result is a consequence of [5, Lemma 2.1] applied to
TM1 , . . . , TMr

.

Proposition 3.8. With the assumptions and notation from Definition 3.3,
Lemma 3.4 and Definition 3.6 one has

ΘM

(
r⋂

k=1

(TMk
T+

Mk
)′

)

⊆
r⋂

k=1

(
RMk/MR∗

Mk/M

)′ ∩ (
T+

MTM

)′
,

where for s = 1, . . . , r and all B ∈ ⋂r
k=1(TMk

T+
Mk

)′

ΘM (B)RMs/MR∗
Ms/M = RMs/MΘMs

(B)R∗
Ms/M = RMs/MR∗

Ms/MΘM (B),

and

ΘMs
(B) = ΓMs/M ◦ ΘM (B). (3.2)

Lemma 3.9. If D1, . . . , Dm are pairwise commuting operators in Definition 3.3,
then for non-empty N ⊆ M ⊆ {1, . . . ,m} the operator RN/MR∗

N/M commutes
with T+

MTM and R∗
N/MRN/M commutes with T+

N TN . Moreover,

ΘM (TNT+
N ) = RN/MR∗

N/MT+
MTM = T+

MTMRN/MR∗
N/M . (3.3)

3For the middle term the operator B : K → K has to be identified with its graph, which is
a subspace of K × K, i.e. a linear relation.
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Proof. If D1, . . . , Dm commute pairwise, then TNT+
N =

∑
j∈N Dj commutes

with TMT+
M =

∑
j∈M Dj . Since

TM

(
T+

MTMRN/MR∗
N/M

)
T+

M = TMT+
M (TMRN/M )(R∗

N/MT+
M )

= TMT+
MTNT+

N = TNT+
N TMT+

M

= TM (RN/MR∗
N/MT+

MTM )T+
M ,

again the injectivity of TM and the density of ranT+
M implies that RN/MR∗

N/M

and T+
MTM commute, which in turn yields

(T+
N TN ) (R∗

N/MRN/M ) = (R∗
N/MT+

MTMRN/M )(R∗
N/MRN/M )

= R∗
N/M (T+

MTMRN/MR∗
N/M )RN/M

= R∗
N/MRN/MR∗

N/MT+
MTMRN/M

= (R∗
N/MRN/M ) (T+

N TN ).

Finally, (3.3) follows from

T−1
M TNT+

N TM = T−1
M TMRN/MR∗

N/MT+
MTM = RN/MR∗

N/MT+
MTM .

�

The following result is a generalization of [5, Corollary 2.3] to n self-
adjoint operators.

Corollary 3.10. With the assumptions and notation from Definition 3.3,
Lemma 3.4 and Definition 3.6 let A = (Aj)n

j=1, where A1, . . . , An ∈ Lb(K) be
pairwise commuting self-adjoint operators that are all contained in⋂r

k=1(TMk
T+

Mk
)′. Then ΘM (A1), . . . ,ΘM (An) ∈ Lb(HM ) (ΘMs

(A1), . . . ,
ΘMs

(An) ∈ Lb(HMs
)) are pairwise commuting self-adjoint operators on the

Hilbert space HM (HMs
, s = 1, . . . , r). By EM (EMs

) we denote the com-
mon spectral measure of ΘM (A) (ΘMs

(A)) on the Borel-subsets of Rn; see
Theorem 2.2 and Remark 2.3.

Then we have EM (Δ) ∈ ⋂r
k=1(RMk/MR∗

Mk/M )′∩(T+
MTM )′ for all Borel-

subsets Δ of Rn and

ΓMs/M (EM (Δ)) = EMs
(Δ) ∈ (R∗

Ms/MRMs/M )′ ∩ (T+
Ms

TMs
)′ (3.4)

for all Borel subsets Δ of Rn. Moreover,
∫

h dEM ∈ ⋂r
k=1(RMk/MR∗

Mk/M )′ ∩
(T+

MTM )′ and

ΓMs/M

(∫
h dEM

)

=
∫

h dEMs
∈ (R∗

Ms/MRMs/M )′ ∩ (T+
Ms

TMs
)′ (3.5)

for any bounded and measurable4 h : suppEM → C and s = 1, . . . , r.

Proof. Since ΘM (ΘMs
) is a ∗-homomorphisms, the images of commuting

operators commute as well. According to Proposition 3.8 ΘM (Aj) belongs to⋂r
k=1(RMk/MR∗

Mk/M )′ ∩ (T+
MTM )′ for every j = 1, . . . , n. By Theorem 2.2 we

conclude EM (Δ) ∈ ⋂r
k=1(RMk/MR∗

Mk/M )′∩(T+
MTM )′ and, in turn,

∫
h dEM ∈

4Note that according to (3.4) we have supp EMs ⊆ supp EM .
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⋂r
k=1(RMk/MR∗

Mk/M )′∩(T+
MTM )′. This also justifies the application of ΓMk/M

to EM (Δ) and
∫

h dEM .
The range of ΘMs

(ΓMs/M ) is contained in (T+
Ms

TMs
)′ ((R∗

Ms/MRMs/M )′).
Again by Theorem 2.2 we obtain EMs

(Δ),
∫

h dEMs
∈ (R∗

Ms/MRMs/M )′ ∩
(T+

Ms
TMs

)′.
For C ∈ (RMs/MR∗

Ms/M )′ we conclude from [6, Theorem 5.8] that
ΓMs/M (C)R∗

Ms/M = R∗
Ms/MC. For arbitrary x ∈ HM and y ∈ HMs

we
therefore have

〈ΓMs/M (EM (Δ))R∗
Ms/Mx, y〉HMs

= 〈R∗
Ms/MEM (Δ)x, y〉HMs

= 〈EM (Δ)x,RMs/My〉HM

and in turn for and s ∈ C[z1, . . . , zn]
∫

Rn

s d〈ΓMs/M (EM (.))R∗
Ms/Mx, y〉HMs

=
∫

Rn

s d〈EM (.)x,RMs/My〉HM

=
〈
s (ΘM (A)) x,RMs/My

〉

HM

=
〈
R∗

Ms/Ms (ΘM (A)) x, y
〉

HMs

=
〈
ΓMs/M (s (ΘM (A)))R∗

Ms/Mx, y
〉

HMs

.

From (3.2) and the fact, that ΓMs/M is a ∗-homomorphism, we conclude
ΓMs/M (s (ΘM (A))) = s (ΘMs

(A)). Therefore,
∫

Rn

s d〈ΓMs/M (EM (.))R∗
Ms/Mx, y〉HMs

=
〈
s (ΘMs

(A)) R∗
Ms/Mx, y

〉

HMs

=
∫

Rn

s d〈EMs
(.)R∗

Ms/Mx, y〉HMs
.

Since suppEM is a compact subset of Rn, C[z1, . . . , zn] is densely contained
in C(suppEM ,C). The uniqueness assertion in the Riesz-Markov Theorem
implies

〈ΓMs/M (EM (Δ))R∗
Ms/Mx, y〉HMs

= 〈EMs
(Δ)R∗

Ms/Mx, y〉HMs

and all Borel-subsets Δ of R
n. Since x ∈ HM was arbitrary, the density

of ranR∗
Ms/M yields 〈ΓMs/M (EM (Δ))z, y〉HMs

= 〈EMs
(Δ)z, y〉HMs

for all
y, z ∈ HMs

. Consequently, ΓMs/M (EM (Δ)) = EMs
(Δ).

From the already proven fact that EMs
(Δ)R∗

Ms/M = ΓMs/M (EM (Δ))
R∗

Ms/M = R∗
Ms/MEM (Δ) we obtain for bounded and measurable h : suppEM →

C and x ∈ HM , y ∈ HMs

〈
ΓMs/M

(∫
h dEM

)
R∗

Ms/Mx, y
〉

HMs

=
〈
R∗

Ms/M

(∫
h dEM

)
x, y

〉

HMs

=
〈( ∫

h dEM

)
x,RMs/My

〉

HM

=
∫

h d〈EM (.)x,RMs/My〉HM
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=
∫

h d〈EMs
(.)R∗

Ms/Mx, y〉HMs
=

〈(∫
h dEMs

)
R∗

Ms/Mx, y
〉

HMs

.

Again the density of ranR∗
Ms/M yields the desired equation (3.5). �

Finally in this section, we will introduce mappings of the same kind
as considered in [6, Lemma 5.11]. With the assumptions and notation from
Definition 3.3 and from Lemma 3.4 for non-empty M ⊆ {1, . . . , m} we define

ΞM :
{

Lb(HM ) → Lb(K),
C �→ TMCT+

M .
(3.6)

For non-empty N ⊆ M ⊆ {1, . . . , m} we define accordingly

ΛN/M :
{

Lb(HN ) → Lb(HM ),
C �→ RN/MCR∗

N/M .

By Lemma 3.4,

ΞN (C) = TNCT ∗
N = TMRN/MCR∗

N/MT ∗
M

= ΞM ◦ ΛN/M (C)
for C ∈ Lb(HN ). (3.7)

According to [6, Lemma 5.11] for C ∈ (RN/MR∗
N/M )′ we have

ΛN/M ◦ ΓN/M (C) = RN/MR∗
N/MC. (3.8)

Hence, using Corollary 3.10 and its notation together with (3.7) and (3.8) we
obtain

ΞN

(∫
h dEN

)

= ΞN ◦ΓN/M

(∫
h dEM

)

= ΞM ◦ΛN/M ◦ΓN/M

( ∫
h dEM

)

= ΞM

(

RN/MR∗
N/M

∫
h dEM

)

. (3.9)

4. Tuples of Definitizable Operators on a Krein Space

In the present section we start with a finite tuple A = (Aj)n
j=1 ∈ Lb(K)n of

pairwise commuting, bounded and self-adjoint operators on a Krein space K.
We also assume that A1, . . . , An are definitizable, i.e. qj(Aj) is positive for
some non-zero polynomial qj ∈ R[ζ] for all j = 1, . . . , n. Such polynomials qj

are called definitizing polynomials for Aj ; see [7].
Employing Definition 3.3 with D1 := q1(A1), . . . , Dn := qn(An), we

obtain Hilbert space Hj and an injective, bounded linear Tj : Hj → K such
that

TjT
+
j = qj(Aj) for all j = 1, . . . , n. (4.1)

More generally, for any non-empty subset M ⊆ {1, . . . , n} we obtain a Hilbert
space HM and an injective, bounded linear TM : HM → K such that TMT+

M =∑
j∈M qj(Aj).

The fact that A1, . . . , An commute pairwise implies that the operators
TjT

+
j = qj(Aj), j = 1, . . . , n, commute pairwise and that A1, . . . , An ∈
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(TMT+
M )′ = (

∑
j∈M qj(Aj))′ for all ∅ 
= M ⊆ {1, . . . , n}. Thus, we can apply

all the results from the previous section.

Lemma 4.1. With the assumptions and notation from the present section,
with RN/M : HN → HM as defined in Lemma 3.4 for ∅ 
= N ⊆ M ⊆
{1, . . . , n} and with the notion from Definition 3.6 we have

∑

j∈N

qj(ΘM (Aj)) = RN/MR∗
N/M

∑

j∈M

qj(ΘM (Aj)),

where RN/MR∗
N/M commutes with

∑
j∈M qj(ΘM (Aj)).

Proof. From (3.3) together with Remark 3.5 and the fact the ΘM is a homo-
morphism we infer

T+
MTM = ΘM (TMT+

M ) = ΘM

⎛

⎝
∑

j∈M

qj(Aj)

⎞

⎠

=
∑

j∈M

ΘM (qj(Aj)) =
∑

j∈M

qj(ΘM (Aj)). (4.2)

By Lemma 3.9 the operator RN/MR∗
N/M commutes with this expression.

Finally we again conclude from (3.3)

∑

j∈N

qj(ΘM (Aj)) = ΘM

⎛

⎝
∑

j∈N

qj(Aj)

⎞

⎠ = ΘM (TNT+
N )

= RN/MR∗
N/MT+

MTM = RN/MR∗
N/M

∑

j∈M

qj(ΘM (Aj)).

�

Proposition 4.2. With the assumptions and notation from the present section
and with the notion from Definition 3.6 for ∅ 
= N ⊆ M ⊆ {1, . . . , n} let EM

denote the common spectral measure of ΘM (A) on the Borel-subsets of Rn;
see Theorem 2.2 and Remark 2.3. Then we have
{

λ ∈ R
n :

∣
∣
∣
∣
∣

∑

j∈N

qj(λj)

∣
∣
∣
∣
∣
> ‖RN/MR∗

N/M‖ ·
∣
∣
∣
∣
∣

∑

j∈M

qj(λj)

∣
∣
∣
∣
∣

}

⊆ C
n\σ(ΘM (A)).

In particular, the zeros of λ �→ ∑
j∈M qj(λj) are contained in

(
C

n\σ(ΘM (A))
)

∪ {λ ∈ R
n : qj(λj) = 0 for all j ∈ {1, . . . , n}}.

Proof. For m ∈ N we set

Δm :=

⎧
⎨

⎩
λ ∈ R

n :

∣
∣
∣
∣
∣

∑

j∈N

qj(λj)

∣
∣
∣
∣
∣

2

>
1
m

+ ‖RN/MR∗
N/M‖2 ·

∣
∣
∣
∣
∣

∑

j∈M

qj(λj)

∣
∣
∣
∣
∣

2
⎫
⎬

⎭
.

If x ∈ ran EM (Δm), then we have
∥
∥
∥
∥
∥

∑

j∈N

qj(ΘM (Aj))x

∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥

∑

j∈N

qj(ΘM (Aj))E(Δm)x

∥
∥
∥
∥
∥

2
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=
∫

Δm

∣
∣
∣
∣
∣

∑

j∈N

qj(zj)

∣
∣
∣
∣
∣

2

d(EM (z)x, x)

≥
∫

Δm

1
m

d(EM (z)x, x)

+ ‖RN/MR∗
N/M‖2

∫

Δm

∣
∣
∣
∣
∣

∑

j∈M

qj(zj)

∣
∣
∣
∣
∣

2

d(EM (z)x, x)

≥ 1
m

‖x‖2 +

∥
∥
∥
∥
∥

RN/MR∗
N/M

∑

j∈M

qj(ΘM (Aj))x

︸ ︷︷ ︸
=

∑
j∈N qj(ΘM (Aj))x

∥
∥
∥
∥
∥

2

.

This inequality can only hold true for x = 0. Hence, EM (Δm) = 0. By
Theorem 2.4 the fact that Δm is open yields

Δm ⊆ C
n\ suppEM = C

n\σ(ΘM (A)).

Taking the union over all m ∈ N we obtain
{

λ ∈ R
n :

∣
∣
∣
∣
∣

∑

j∈N

qj(λj)

∣
∣
∣
∣
∣
> ‖RN/MR∗

N/M‖ ·
∣
∣
∣
∣
∣

∑

j∈M

qj(λj)

∣
∣
∣
∣
∣

}

=
⋃

m∈N

Δm ⊆ C
n\σ(ΘM (A)).

If
∑

j∈M qj(zj) = 0 and z 
∈ {λ ∈ R
n : qj(λj) = 0 for all j ∈ {1, . . . , n}} then

|qk(zk)| > 0 = ‖R{k}/MR∗
{k}/M‖ · |∑j∈M qj(zj)| for some k ∈ {1, . . . , n}.

From the already shown applied to N = {k} we conclude z 
∈ σ(ΘM (A)).
�

Corollary 4.3. With the notation and assumptions from Proposition 4.2 and
Δ := {λ ∈ R

n : qk(λk) 
= 0 for some k ∈ {1, . . . , n}} we have

RN/MR∗
N/MEM (Δ) =

∫

Δ

∑
j∈N qj(zj)

∑
j∈M qj(zj)

dEM (z).(4.3)

Proof. By Proposition 4.2 the zeros of supp EM � λ �→ ∑
j∈M qj(λj) are

contained in R
n\Δ and we have
∣
∣
∣
∣
∣

∑

j∈N

qj(λj)

∣
∣
∣
∣
∣
≤ ‖RN/MR∗

N/M‖ ·
∣
∣
∣
∣
∣

∑

j∈M

qj(λj)

∣
∣
∣
∣
∣

for every λ ∈ suppEM . Hence, the integrand is bounded on Δ ∩ suppEM

and consequently the integral in (4.3) does exist.
For 0 
= x ∈ U := ranEM (Δ) we have
∥
∥
∥
∥

∫ ∑

j∈M

qj(zj) dEM (z)x
∥
∥
∥
∥

2

=
∥
∥
∥
∥

∫ ∑

j∈M

qj(zj) dEM (z)EM (Δ)x
∥
∥
∥
∥

2
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=
∫

Δ

∣
∣
∣
∑

j∈M

qj(zj)
∣
∣
∣
2

︸ ︷︷ ︸
>0 on Δ

d(EM (z)x, x) > 0

and for x ∈ U⊥ = ranEM (Rn\Δ) we have
∥
∥
∥
∥

∫ ∑

j∈M

qj(zj) dEM (z)x
∥
∥
∥
∥

2

=
∫

Rn\Δ

∣
∣
∣
∑

j∈M

qj(zj)
∣
∣
∣
2

︸ ︷︷ ︸
=0 on Rn\Δ

d(EM (z)x, x) = 0.

Therefore, U⊥ = ker
(∫ ∑

j∈M qj(zj) dEM (z)
)∗

. Consequently, the range of
∫ ∑

j∈M qj(zj) dEM (z) is densely contained in U . Every x from in this dense
subspace can be written as x =

∫ ∑
j∈M qj(zj) dEM (z)y for some y ∈ U . We

obtain from Lemma 4.1
∫

Δ

∑
j∈N qj(zj)

∑
j∈M qj(zj)

dEM (z)x =
∫

Δ

∑

j∈N

qj(zj) dEM (z)y =
∑

j∈N

qj(ΘM (Aj))y

= RN/MR∗
N/M

∑

j∈M

qj(ΘM (Aj))y = RN/MR∗
N/Mx.

The density of the space of the considered x in U finally yields (4.3). �

Remark 4.4. In the present section we did not exclude the possibility that
qj(Aj) = 0 for some j = 1, . . . , n. In this case we have Hj = {0} and Tj = 0.
Interpreting the appearing operators involving Hj as zero and their spectrum
as the emptyset all results in the present section remain true. ♦

5. Special Function Classes

For n ∈ N a subset I ⊆ Z
n is called an interval if α, β ∈ I and γ ∈ Z

n with
αj ≤ γj ≤ βj for all j = 1, . . . , n implies γ ∈ I.

Example 5.1. Given α, β ∈ Z
n the following subsets

[α, β) := {γ ∈ Z
n : αj ≤ γj < βj for all j = 1, . . . , n},

[α, β] := {γ ∈ Z
n : αj ≤ γj ≤ βj for all j = 1, . . . , n},

[α, β� := {γ ∈ [α, β] : #{j ∈ {1, . . . , n} : γj < βj} ≥ n − 1},

of Zn are intervals. If αj < βj for all j = 1, . . . , n, then

[α, β� = [α, β) ∪ {β1 · e1, . . . , βn · en},

where ej ∈ Z
n has 1 at position j and zero elsewhere. ♦

Definition 5.2. For n ∈ N and an interval I ⊆ (N0)n with (0, . . . , 0) ∈ I we
provide C

I with componentwise addition, scalar multiplication, component-
wise complex conjugation ā := (āj)j∈I for a = (aj)j∈I and a multiplication
· : CI × C

I → C
I defined by
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a · b :=

⎛

⎝
∑

β+γ=α

aβbγ

⎞

⎠

α∈I

for a, b ∈ C
I .

Moreover, for intervals I ⊂ J ⊆ (N0)n let πJ,I : CJ → C
I denote the

projection πJ,I((aj)j∈J) = (aj)j∈I . ♦

Remark 5.3. Given an interval I ⊆ (N0)n with (0, . . . , 0) ∈ I the set C
I

endowed with the operations introduced in Definition 5.2 forms a unital and
commutative ∗-algebra. Its unit is given by e = (eα)α∈I with e(0,...,0) = 1 and
eα = 0 for α 
= 0. Moreover, it is easy to check that an element a ∈ C

I has a
multiplicative inverse in C

I if and only if a(0,...,0) 
= 0. ♦

Definition 5.4. For a polynomial p ∈ C[ζ]\{0} we denote its zero set by

Zp := {ζ ∈ C : p(ζ) = 0}
and we define the function

dp :
{
C → N0,
ζ �→ min{j ∈ N0 : p(j)(ζ) 
= 0} .

For a fixed tuple q = (q1, . . . , qn) ∈ (C[ζ]\{0})n of polynomials and z ∈ C
n

we employ the notation

dq(z) :=
(
dqj

(zj)
)n

j=1
∈ (N0)n, (5.1)

and define the following subsets of Cn

Zq :=
n∏

j=1

Zqj
, ZR

q := Zq ∩ R
n, Z i

q := Zq\Rn.

Finally, we define I : Cn → P((N0)n) by

I(z) =

⎧
⎪⎨

⎪⎩

{(0, . . . , 0)}, if z 
∈ Zq,

[0, dq(z)�, if z ∈ ZR

q ,

[0, dq(z)), if z ∈ Z i
q.

(5.2)

♦

In the following we assume A = (Ai)n
i=1 to be a tuple in Lb(K), where

A1, . . . , An ∈ Lb(K) are pairwise commuting, bounded and self-adjoint oper-
ators on a Krein space K, which are definitizable. Moreover, let qj ∈ R[ζ]\{0}
be fixed definitizing polynomials for Aj , i.e. qj(Aj) is positive for j = 1, . . . , n.
We use the notation from the previous section. For short we will write H for
H{1,...,n}, T for T{1,...,n}, Θ for Θ{1,...,n} and Rj for R{j}/{1,...,n}.

Definition 5.5. With q = (q1, . . . , qn) let M be the set of all functions

φ : σ(Θ(A)) ∪ Zq
︸ ︷︷ ︸

⊆Cn

→
⋃

M⊆(N0)n

C
M

with φ(z) ∈ C
I(z) for all z ∈ σ(Θ(A)) ∪ Zq.
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We endow M with pointwise scalar multiplication, addition and multi-
plication, where the operations on C

I(z) are as in5 Definition 5.2. For φ ∈ M
also define

φ#(z) = φ(z) for z ∈ σ(Θ(A)) ∪ Zq. ♦

Since qj has real coefficients for j = 1, . . . , n, we have I(z) = I(z).
Hence, φ# ∈ M and .# : M → M is a conjugate linear involution.

Remark 5.6. Using Remark 5.3 it is easy to check that M constitutes a com-
mutative ∗-algebra. ♦

For z ∈ C
n and α ∈ (N0)n we shall employ the following handy notion

zα =
n∏

j=1

z
αj

j , α! =
n∏

j=1

αj ! , |α| =
n∑

j=1

αj .

Definition 5.7. Let f : dom f → C be a function with

σ(Θ(A)) ∪ Zp ⊆ dom f ⊆ C
n,

such that f is sufficiently smooth—more exactly, at least

max
w∈ZR

q

|dq(w)| − n + 1

times continuously differentiable—on an open neighborhood of ZR

q as subset
of R

n, and such that f is holomorphic on an open neighborhood of Z i
q as

subset of Cn. Then we define fM ∈ M by

fM(z) :=

⎧
⎪⎨

⎪⎩

f(z) if z ∈ σ(Θ(A))\ZR

q ,
(

1
α!D

αf(z)
)

α∈I(z)

, if z ∈ Zq.

For z ∈ ZR

q the higher derivative Dα should be understood in the sense of
real derivation and for z ∈ Z i

q in the sense of complex derivation. ♦

Remark 5.8. Let f, g be functions which satisfy the conditions of Defini-
tion 5.7. For z ∈ Zq and α ∈ I(z) the Leibniz rule yields

(
(fg)M(z)

)
α

=
1
α!

Dα(fg)(z) =
1
α!

∑

β+γ=α

α!
β!γ!

Dβf (z)Dγg(z)

=
∑

β+γ=α

1
β!

Dβf(z)
1
γ!

Dγg(z) =
(
fM(z) · gM(z)

)
α
.

Therefore, (fg)M(z) = fM(z) · gM(z). Consequently, (fg)M = fM · gM.
Moreover, it is easy to check that for λ, μ ∈ C

(λf + μg)M = λfM + μgM.

5Recall from (5.2) that I(z) constitutes an interval for all z.
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Furthermore, we define the function f# by f#(z) = f(z) for z ∈ dom f
and immediately convince ourselves that also f# satisfies the conditions of
Definition 5.7 and that

(f#)M = (fM)#. ♦

Example 5.9. Let j ∈ {1, . . . , n} be fixed and qj be a real definitizing poly-
nomial of Aj . Then we can regard qj also as an element of C[z1, . . . , zn] by
setting qj(z) = qj(zj) for z ∈ C

n. Clearly, qj : Cn → C satisfies all conditions
of Definition 5.7. Since qj(z) is constant in every direction zk for k 
= j, every
derivative in these directions vanishes. For z ∈ Zq we have q

(l)
j (zj) = 0 for

l ∈ {0, . . . , dqj
(zj) − 1} and q

(dqj
(zj))

j (zj) 
= 0. Thus,

� qjM(z) = qj(zj) for z ∈ σ(Θ(A))\ZR

q ,
� qjM(z) = 0 ∈ C

I(z) for z ∈ Z i
q and

� qjM(z) = (qjM(z)α)α∈I(z) with

qjM(z)α =

⎧
⎨

⎩

0, if α ∈ I(z)\{dqj
(zj)ej},

1
dqj

(zj)!
q
(dqj

(zj))

j (zj), if α = dqj
(zj)ej .

for z ∈ ZR

q ; see Example 5.1. ♦

Lemma 5.10. For every φ ∈ M there exists an s ∈ C[z1, . . . , zn] such that
φ(w) − sM(w) = 0 for all w ∈ Zq, such that φ �→ s is linear and such that
s = 0 if φ(w) = 0 for all w ∈ Zq.

Proof. For w ∈ Zq the polynomial

pw(z) :=
∏

v∈Zq\{w}

n∏

j=1
vj �=wj

(zj − vj)
dqj

(vj)+1 ∈ C[z1, . . . , zn]

satisfies Dαpw(v) = 0 for v ∈ Zq\{w} and α ∈ [0, dq(v)] as can be checked
with the help of the multivariable Leibniz rule. Moreover, pw(w) 
= 0. As
noted in Remark 5.3

( 1
α!

Dαpw(w)
)

α∈[0,dq(w)]
∈ C

[0,dq(w)]

has a multiplicative inverse b ∈ C
[0,dq(w)]. Let a ∈ C

[0,dq(w)] be given by
aα = φ(w)α for all α ∈ I(w) and aα = 0 for α ∈ [0, dq(w)]\I(w) and set

rw(z) :=

⎛

⎝
∑

α∈[0,dq(w)]

(a · b)α(z − w)α

⎞

⎠ · pw(z).

Using again the multivariable Leibniz rule we derive Dαrw(v) = 0 for v ∈
Zq\{w}, α ∈ [0, dq(v)], and

( 1
α!

Dαrw(w)
)

α∈[0,dq(w)]
= (a · b) ·

( 1
α!

Dαpw(w)
)

α∈[0,dq(w)]
= a.
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From this we derive for s(z) :=
∑

v∈Zq
rv(z)

sM(w) =
∑

v∈Zq

rv
M(w) = rw

M(w)

= π[0,dq(w)],I(w)

( 1
α!

Dαrw(w)
)

α∈[0,dq(w)]
= φ(w).

Finally, by our choice of a ∈ C
[0,dq(w)] for each w ∈ Zq the polynomial s

depends linearly on φ and φ(w) = 0 yields a = 0 for all w ∈ Zq which implies
s = 0. �

Remark 5.11. The polynomial s ∈ C[z1, . . . , zn] constructed in the proof of
Lemma 5.10 only depends on φ(w) ∈ C

I(w), w ∈ Zq. Moreover, by construc-
tion the degree of s is at most

d := max
v∈Zq\{w}

|dq(v)| ·
⎛

⎝
∑

v∈Zq\{w}

(|dq(v)| + n
)
⎞

⎠ .

It is easy to see from the previous proof that the coefficients ( 1
α!D

αs(0))|α|≤d

of s depend linearly and continuously on φ, when M is provided with the
seminorm

max
w∈Zq

max
α∈I(w)

|φ(w)α|,

which implies

max
|α|≤d

1
α!

|Dαs(0)| ≤ C · max
w∈Zq

max
α∈I(w)

|φ(w)α|

for some C > 0. ♦

Corollary 5.12. For every φ ∈ M and every s ∈ C[z1, . . . , zn] such that
φ(w)−sM(w) = 0 for all w ∈ Zq there exists a function g : σ(Θ(A))∪Zq → C

satisfying g|Zq
≡ 0 such that6

φ(z) = sM(z) + g(z) ·
⎛

⎝
n∑

j=1

(qj)M(z)

⎞

⎠

for all z ∈ σ(Θ(A)) ∪ Zq.

Proof. For z ∈ σ(Θ(A)) we know from Proposition 4.2 that
∑n

j=1 qj(zj) = 0
implies z ∈ Zq. Therefore, if s ∈ C[z1, . . . , zn] is as in Lemma 5.10, then
setting

g(z) :=

{
1∑n

j=1 qj(zj)
· (

φ(z) − s(z)
)
, if z ∈ σ(Θ(A))\ZR

q ,

0, if z ∈ Zq,

we obtain a well defined function g : σ(Θ(A)) ∪ Zq → C with the desired
properties. �

6Here g(z) · (. . .) denotes the scalar multiplication of g(z) ∈ C with a vector from C
I(z).
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Definition 5.13. With the notation from Definition 5.5 we denote by F the
set of all φ ∈ M such that φ|σ(Θ(A))\ZR

q
as a mapping from σ(Θ(A))\ZR

q to C

is Borel measurable and bounded, and such that for each w ∈ σ(Θ(A))∩ZR

q ,
which is not isolated in σ(Θ(A)),

φ(z) − ∑
α∈[0,dq(w))

(
φ(w)

)
α
(z − w)α

maxj=1,...,n |zj − wj |dqj
(wj)

(5.3)

is bounded for z ∈ σ(Θ(A)) ∩ U(w)\{w}, where U(w) is a sufficiently small
neighborhood of w. ♦

Using Big O notation, the fact that (5.3) is bounded on a sufficiently
small neighborhood of w can equivalently be expressed as

φ(z) =
∑

α∈[0,dq(w))

(
φ(w)

)
α
(z − w)α + O

(
max

j=1,...,n
|zj − wj |dqj

(wj)
)

(5.4)

as σ(Θ(A))\ZR

q � z → w.

Remark 5.14. Since (5.3) is bounded for z ∈ (σ(Θ(A))\ZR

q )\U(w) if
φ|σ(Θ(A))\ZR

q
is bounded, a function φ ∈ M belongs to F if and only if φ(z)

and (5.3) for all non isolated w ∈ σ(Θ(A)) ∩ ZR

q are bounded as z runs in
σ(Θ(A))\ZR

q and φ|σ(Θ(A))\ZR
q

is Borel measurable. ♦

Remark 5.15. It is straight forward to check that F + F ⊆ F , C · F ⊆ F ,
and F# ⊆ F . In fact, equalities prevail. We also have F · F ⊆ F .

Indeed, if φ, ψ ∈ F , then (φ · ψ)|σ(Θ(A))\ZR
q

is clearly measurable and
bounded. Moreover, for any α ∈ (N0)n and β ∈ (N0)n\[0, dq(w)) we have

(

O

(

max
j=1,...,n

|zj − wj |dqj
(wj)

))2

= O

(

max
j=1,...,n

|zj − wj |dqj
(wj)

)

,

(z − w)α · O

(

max
j=1,...,n

|zj − wj |dqj
(wj)

)

= O

(

max
j=1,...,n

|zj − wj |dqj
(wj)

)

,

(z − w)β = O

(

max
j=1,...,n

|zj − wj |dqj
(wj)

)

as z → w. For a not isolated w ∈ σ(Θ(A)) ∩ ZR

q (5.4) therefore yields

φ(z) · ψ(z) =

⎛

⎝
∑

α∈[0,dq(w))

(
φ(w)

)
α
(z − w)α + O

(
max

j=1,...,n
|zj − wj |dqj

(wj)
)
⎞

⎠

·
⎛

⎝
∑

α∈[0,dq(w))

(
ψ(w)

)
α
(z − w)α + O

(

max
j=1,...,n

|zj − wj |dqj
(wj)

)⎞

⎠

=
∑

α∈(N0)n

⎛

⎜
⎜
⎝

∑

β,γ∈[0,dq(w))
β+γ=α

(
φ(w)

)
β

· (
ψ(w)

)
γ

⎞

⎟
⎟
⎠ · (z − w)α
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+ O

(

max
j=1,...,n

|zj − wj |dqj
(wj)

)

=
∑

α∈[0,dq(w))

(
φ(w) · ψ(w)

)
α
(z − w)α + O

(

max
j=1,...,n

|zj − wj |dqj
(wj)

)

.

Thus, F is a ∗-subalgebra of M. ♦

Example 5.16. Let w ∈ Zq be an isolated point of σ(Θ(A)) ∪ Zq (⊆ C
n),

let a ∈ C
I(w) and let δw : σ(Θ(A)) ∪ Zq → C defined by δw(w) := 1 and

δw(z) := 0 if z 
= w. Then δwa ∈ M defined by (δwa)(z) := 0 for z 
= w and
by (δwa)(w) = a is an element of F . Clearly, every element of Z i

q is isolated
in σ(Θ(A)) ∪ Zq. ♦

Lemma 5.17. Let f : dom f → C be a function with the properties mentioned
in Definition 5.7. If f |σ(Θ(A)) is bounded and measurable, then fM ∈ F .

Proof. Under the present assumption fM|σ(Θ(A))\ZR
q

as a mapping from

σ(Θ(A))\ZR

q to C coincides with f |σ(Θ(A))\ZR
q

and is therefore bounded and
measurable.

Since for a fixed w ∈ σ(Θ(A))∩ZR

q which is non-isolated in σ(Θ(A)) the
function f is m := maxζ∈ZR

q
|dq(ζ)|−n+1 times continuous differentiable on

an open subset of Rn containing w, by the Taylor Approximation Theorem
from multidimensional calculus the expression

f(z) −
∑

α∈(N0)
n

|α|≤m−1

1
α!

Dαf(w)(z − w)α

is a O(‖z−w‖m
∞) as z → w. Because of dqj

(wj) ≥ 1 we have |dq(w)|−n+1 ≥
dqj

(w) for all j = 1, . . . , n, and hence

‖z − w‖m
∞ ≤ max

j=1,...,n
|zj − wj ||dq(w)|−n+1 ≤ max

j=1,...,n
|zj − wj |dqj

(wj)

for ‖z − w‖∞ ≤ 1. Moreover, for α ∈ (N0)n\[0, dq(w)) we infer αk ≥ dqk
(w)

for some k ∈ {1, . . . , n}, and in turn

|(z − w)α| ≤ |zk − wk|αk ≤ |zk − wk|dqk
(w) ≤ max

j=1,...,n
|zj − wj |dqj

(w) (5.5)

for ‖z − w‖∞ ≤ 1. Therefore,
∣
∣
∣fM(z)−

∑

α∈[0,dq(w))

(
fM(w)

)
α
(z − w)α

∣
∣
∣

≤
∣
∣
∣f(z) −

∑

α∈(N0)
n

|α|≤m−1

1
α!

Dαf(w)(z − w)α
∣
∣
∣

+
∑

α∈(N0)
n\[0,dq(w))

|α|≤m−1

1
α!

|Dαf(w)| · |(z − w)α|
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is a O(maxj=1,...,n |zj − wj |dqj
(wj)) as z → w. According to Definition 5.13

the function fM then belongs to F . �

Lemma 5.18. If φ ∈ F is such that φ(z) is invertible in C
I(z) for all z ∈

σ(Θ(A))∪Zq and such that 0 does not belong to the closure of φ(σ(Θ(A))\ZR

q )
as a subset of C, then φ−1 defined by φ−1(z) := φ(z)−1 also belongs to F .

Proof. By the first assumption φ−1 is a well-defined function belonging to
M. Since 0 does not belong to the closure of φ(σ(Θ(A))\ZR

q ) the mapping
z �→ 1

φ(z) is bounded on σ(Θ(A))\ZR

q . The measurability of φ|σ(Θ(A))\ZR
q

clearly implies the measurability of z �→ 1
φ(z) on σ(Θ(A))\ZR

q .
Let w ∈ σ(Θ(A))∩ZR

q be non-isolated in σ(Θ(A)). For z ∈ σ(Θ(A))\ZR

q

we calculate

φ−1(z)−
∑

α∈[0,dq(w))

(
φ−1(w)

)
α
(z − w)α

=
1

φ(z)
− 1

∑
α∈[0,dq(w))

(
φ(w)

)
α
(z − w)α

(5.6)

+
1

∑
α∈[0,dq(w))

(
φ(w)

)
α
(z − w)α

−
∑

α∈[0,dq(w))

(
φ−1(w)

)
α
(z − w)α. (5.7)

The term (5.6) can be rewritten as

− 1
φ(z)

· 1
∑

α∈[0,dq(w))

(
φ(w)

)
α
(z − w)α

·
(

φ(z) −
∑

α∈[0,dq(w))

(
φ(w)

)
α
(z − w)α

)

.

By assumption 1
φ(z) is bounded. The invertibility of φ(w) guarantees

(
φ(w)−1

)
0


= 0, which yields the boundedness of

1
∑

α∈[0,dq(w))

(
φ(w)

)
α
(z − w)α

(5.8)

on a certain neighborhood of w. From φ ∈ F we infer φ(z) − ∑
α∈[0,dq(w))

(
φ(w)

)
α
(z − w)α = O(maxj=1,...,n |zj − wj |dqj

(wj)) as z → w. Thus, (5.6) is
also an O(maxj=1,...,n |zj − wj |dqj

(wj)).
We can write (5.7) as (5.8) times

1 −
∑

α∈(N0)n

∑

β,γ∈[0,dq(w))
β+γ=α

(
φ(w)

)
β

(
φ(w)−1

)
γ
(z − w)α

= 1 −
∑

α∈[0,dq(w))

∑

β,γ∈[0,dq(w))
β+γ=α

(
φ(w)

)
β

(
φ(w)−1

)
γ

︸ ︷︷ ︸
=eα

(z − w)α
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−
∑

α∈(N0)
n

α�∈[0,dq(w))

∑

β,γ∈[0,dq(w))
β+γ=α

(
φ(w)

)
β

(
φ(w)−1

)
γ
(z − w)α.

For α ∈ (N0)n\[0, dq(w)) we have |(z−w)α| = O(maxj=1,...,n |zj −wj |dqj
(wj));

see (5.5). Since
∑

α∈[0,dq(w)) eα(z − w)α = 1, we see that (5.7) is an

O(maxj=1,...,n |zj − wj |dqj
(wj)). Consequently, φ−1 ∈ F . �

Finally, we can bring a refinement of Corollary 5.12 for functions in F .

Lemma 5.19. Let φ ∈ F be decomposed as

φ = sM + g ·
(

n∑

j=1

(qj)M

)

(5.9)

with s ∈ C[z1, . . . , zn] and a function g : σ(Θ(A))∪Zq → C satisfying g|Zq
≡ 0

as in Corollary 5.12. We will call such a pair s, g an admissible decomposition
of φ.

Then g|σ(Θ(A))\ZR
q
is bounded and measurable.

Proof. According to Corollary 5.12 there exist decompositions as in (5.9).
By (5.9) and the fact that

∑n
j=1 qjM(z) does not vanish on σ(Θ(A))\ZR

q

(see Proposition 4.2) the measurability of g|σ(Θ(A))\ZR
q

follows from the assumed
measurability of φ|σ(Θ(A))\ZR

q
for functions φ ∈ F ; see Definition 5.13.

In order to show the boundedness of g, first recall from Proposition 4.2
that

maxj=1,...,n |qj(z)|
∣
∣ ∑n

j=1 qj(z)
∣
∣ ≤ max

j=1,...,n
‖RjR

∗
j‖ (5.10)

for z ∈ σ(Θ(A))\ZR

q . Hence,

|g(z)| =
|φ(z) − s(z)|
∣
∣ ∑n

j=1 qj(z)
∣
∣ =

|φ(z) − s(z)|
maxj=1,...,n |qj(zj)| · maxj=1,...,n |qj(z)|

∣
∣ ∑n

j=1 qj(z)
∣
∣

(5.11)

is bounded, if we can prove that the first factor on the right hand side is
bounded.

For a fixed non-isolated w ∈ σ(Θ(A)) ∩ ZR

q we have

|φ(z) − s(z)|
maxj=1,...,n |qj(zj)|

=
|φ(z) − s(z)|

maxj=1,...,n |zj − wj |dqj
(wj)

maxj=1,...,n |zj − wj |dqj
(wj)

maxj=1,...,n |qj(zj)| (5.12)

Since wj is a zero of qj with multiplicity exactly dqj
(wj) for j = 1, . . . , n,

|zj − wj |dqj
(wj) = O(qj(zj)) as zj → wj , and in turn

max
j=1,...,n

|zj − wj |dqj
(wj) = O

(

max
j=1,...,n

|qj(zj)|
)

(5.13)
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as z → w. Hence, the second factor on the right hand side in (5.12) is bounded
on a neighborhood of w. φ(z) − s(z) for σ(Θ(A))\ZR

q is the difference of

φ(z) −
∑

α∈[0,dq(w))

(
φ(w)

)
α
(z − w)α

and

sM(z) −
∑

α∈[0,dq(w))

(
φ(w)

)
α
(z − w)α.

Since according to (5.9) we have sM(w) = φ(w), we conclude from Lem-
mas 5.17 and (5.4) that φ(z) − s(z) = O(maxj=1,...,n |zj − wj |dqj

(wj)) as
σ(Θ(A))\ZR

q � z → w. Thus, also the first factor on the right hand side in
(5.12) is bounded on a neighborhood of w.

Employing this for any non-isolated w ∈ σ(Θ(A))∩ZR

q , for each w ∈ ZR

q

we obtain a neighborhood Uw of w such that (5.12) is bounded on σ(Θ(A))∩⋃
w∈ZR

q
(Uw\{w}). The boundedness on σ(Θ(A))\ ⋃

w∈ZR
q

Uw follows from the

assumed boundedness of φ|σ(Θ(A))\ZR
q

for functions φ ∈ F . �

Finally, we want to provide F with the norm

‖φ‖F := max
z∈σ(Θ(A))∪Zq

|φ(z)|

+ max
w∈ZR

q w not isolated
sup

z∈σ(Θ(A))\ZR
q

∣
∣
∣
∣
∣

φ(z) − ∑
α∈[0,dq(w))

(
φ(w)

)
α
(z − w)α

maxj=1,...,n |zj − wj |dqj
(wj)

∣
∣
∣
∣
∣
,

where |φ(z)| = maxα∈I(z) |φ(z)α| for z ∈ Zq. Using Remark 5.14 it is straight
forward to check that ‖.‖F is finitely valued and is indeed a norm.

Lemma 5.20. The mapping F � φ �→ sM ∈ F , which assigns to φ the poly-
nomial s ∈ C[z1, . . . , zn] from Lemma 5.10, is linear and bounded when F is
provided with ‖.‖F . Moreover, the mapping7

F � φ �→ g ∈ B(σ(Θ(A)) ∪ ZR

q ,C),

which assigns to φ the function g from (5.9) where s ∈ C[z1, . . . , zn] is as in
Lemma 5.10, is also linear and bounded.

Proof. Since all norms on a finite dimensional vector spaces are equivalent,
it follows from Remark 5.11 the mapping F � φ �→ s ∈ C[z1, . . . , zn]≤d

is bounded, where d ∈ N is as in Remark 5.11 and where C[z1, . . . , zn]≤d

denotes the space of all polynomials in C[z1, . . . , zn] with degree less or equal
to d. Since linear mappings defined on finite dimensional normed spaces are
always bounded, also C[z1, . . . , zn]≤d � s �→ sM ∈ F is bounded. Thus, we
verified the first part of the present assertion.

For given φ ∈ F and s ∈ C[z1, . . . , zn] as in Lemma 5.10 the correspond-
ing function g(φ, s) in (5.9) coincides with g(φ − sM, 0), i.e. the function g

7Here B(σ(Θ(A)) ∪ ZR
q ,C) denotes the Banach space of all complex valued and bounded

functions on σ(Θ(A)) ∪ ZR
q provided with ‖.‖∞.



29 Page 24 of 36 M. Kaltenbäck and N. Skrepek IEOT

in (5.9) applied to φ − sM ∈ F and 0 ∈ C[z1, . . . , zn]. Since φ �→ φ − sM is
linear and bounded by the first part of the proof, it remains to check that
φ �→ g(φ, 0) is linear and bounded on the subspace {φ ∈ F : φ|Zq

≡ 0}.
Let φ ∈ F with φ|Zq

≡ 0. By (5.11) and (5.10) we have

|g(φ, 0)(z)| ≤ max
j=1,...,n

‖RjR
∗
j‖ · |φ(z)|

maxj=1,...,n |qj(zj)| . (5.14)

Chose ε > 0 so small that ‖w−v‖ > 2ε for two different v, w ∈ σ(Θ(A))∩ZR

q

which are not isolated in σ(Θ(A)) ∪ ZR

q .

If for z ∈ σ(Θ(A))\ZR

q we have ‖z − w‖ ≥ ε for all not isolated
w ∈ σ(Θ(A)) ∩ ZR

q , then maxj=1,...,n |qj(zj)| ≥ ρ for some ρ > 0 which is
independent from z. Hence,

|g(φ, 0)(z)| ≤ D · |φ(z)| ≤ D · ‖φ‖F

for some constant D > 0 which is also independent from z. If ‖z − w‖ < ε

for some not isolated w ∈ σ(Θ(A)) ∩ ZR

q , then maxj=1,...,n |zj − wj |dqj
(wj) ≤

ηw maxj=1,...,n |qj(zj)| for some constant ηw > 0. Hence,

|g(φ, 0)(z)| ≤ Dw · |φ(z)|
maxj=1,...,n |zj − wj |dqj

(wj)
≤ Dw · ‖φ‖F

for some constant Dw > 0. �

6. The Spectral Theorem

In the present section we again have a tuple A = (Aj)n
j=1 whose entries

are pairwise commuting, bounded, self-adjoint and definitizable operators
A1, . . . , An ∈ Lb(K) on a Krein space K where for j = 1, . . . , n we denote
by qj ∈ R[ζ]\{0} a definitizing polynomial for Aj . We shall employ the same
notation as the previous two sections. In particular, we will again write H for
H{1,...,n}, T for T{1,...,n}, Θ for Θ{1,...,n} and Rj for R{j}/{1,...,n}. In addition,
we shall write Ξ for Ξ{1,...n}, Ξj for Ξ{j}, E for E{1,...,n} and Ej for E{j}. We
start with an elementary algebraic lemma.

Lemma 6.1. Let v(z1, . . . , zn) ∈ C[z1, . . . , zn] be such that the zj-degree of v
is less than deg qj for j = 1, . . . , n. If Dαv(w) = 0 for all α ∈ [0, dq(w)) and
all w ∈ Zq, then v = 0.

Proof. We proof this assertion by induction on n. For n = 1 this is clear.
Assume the statement is true for n − 1 ∈ N. If v(z1, . . . , zn) ∈ C[z1, . . . , zn]
has the asserted properties, then the polynomial ∂m

∂zm
n

v(z1, . . . , zn−1, wn) ∈
C[z1, . . . , zn−1] satisfies the assumption of the present lemma for any m ∈
{0, . . . , dqn

(w) − 1} and any wn ∈ Zqn
. By induction hypothesis all these

polynomials vanish. Keeping z1, . . . , zn−1 ∈ C fixed this implies that v(z1, . . . ,
zn−1, zn) as a polynomial in the variable zn vanishes. �
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Lemma 6.2. For a given φ ∈ F and two admissible decompositions s, g and
r, h of φ in the sense of Lemma 5.19 we have

s(A) + Ξ
( ∫

σ(Θ(A))

g dE

)

= r(A) + Ξ
( ∫

σ(Θ(A))

h dE

)

,

where E denotes the common spectral measure of Θ(A) ∈ Lb(H)n on the
Borel-subsets of Rn; see Theorem 2.2 and Remark 2.3.

Proof. By assumption φ − sM, φ − rM and in consequence also their dif-
ference sM − rM vanish at all points of Zq. Considering p(z) := s(z) −
r(z) ∈ C[z1, . . . , zn] for fixed z2, . . . , zn as a polynomial in C[z1] we can
apply the Euclidean algorithm and get p(z) = q1(z1)u1(z) + v1(z) where
v1(z) ∈ C[z1, . . . , zn] has a z1-degree less than deg q1. Now we apply the
Euclidean algorithm to q2(z2) and v1 as a polynomial in the variable z2.
Continuing this way we obtain

s(z) − r(z) =
n∑

j=1

qj(zj)uj(z) + v(z)

By Lemma 6.1 we conclude v = 0. Moreover, for w ∈ ZR

q we have dqj
(wj)·ej ∈

I(w) and in turn

0 = Ddqj
(wj)·ej

(
s − r

)
(w) = q

(dqj
(wj))

j (wj)uj(w),

where q
(dqj

(wj))

j (wj) 
= 0. Hence, uj(w) = 0 for all j = 1, . . . , n.
By (4.1) and [6, Lemma 5.11] we have

Ξj

(
uj(Θj(A))

)
= Ξj

(
Θj(uj(A))

)
= qj(Aj)uj(A) (6.1)

for every j ∈ {1, . . . , n}.
From uj

(
Θj(A)

)
=

∫
uj dEj , (3.9) and Corollary 4.3 we derive

Ξj

(
uj(Θj(A))

)
= Ξj

(∫
uj dEj

)

= Ξ
(

RjR
∗
j

∫
uj dE

)

= Ξ

(

RjR
∗
j

∫

ZR
q

uj dE +
∫

σ(Θ(A))\ZR
q

qj(zj)uj(z)
∑n

k=1 qk(zk)
dE(z)

)

.

(6.2)

Employing (6.1), (6.2) and the fact that uj(w) = 0 for w ∈ ZR

q we obtain

s(A) − r(A) = Ξ
(∫

σ(Θ(A))\ZR
q

∑n
j=1 qj(zj)uj(z)
∑n

j=1 qj(zj)
dE(z)

)

On the other hand, since both s, g and r, h are decompositions of φ in sense
of Lemma 5.19, we have

(sM − rM)(z) =
n∑

j=1

(h(z) − g(z)) · qjM(zj)
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for z ∈ σ(Θ(A)). In particular, for z ∈ σ(Θ(A))\ZR

q

n∑

j=1

qj(zj)uj(z) = (h(z) − g(z)) ·
n∑

j=1

qj(zj).

Since h and g vanish on ZR

q , we obtain

s(A) − r(A) = Ξ
(∫

σ(Θ(A))\ZR
q

(h(z) − g(z)) dE(z)
)

= Ξ
(∫

σ(Θ(A))

(h(z) − g(z)) dE(z)
)

.

�

According to Lemma 6.2 the following definition does not depend on
the actual choice of the decomposition of φ.

Definition 6.3. If φ ∈ F and if s, g is an admissible decomposition of φ in the
sense of Lemma 5.19, then we define

φ(A) := s(A) + Ξ
(∫

σ(Θ(A))

g dE

)

. ♦

Theorem 6.4. The mapping φ �→ φ(A) constitutes a ∗-homomorphism from
F into A′′ (⊆ Lb(K) ) which satisfies sM(A) = s(A) for every polynomial
s ∈ C[z1, . . . , zn].

Proof. Since sM = sM + 0 · ( ∑n
j=1 qjM(z)

)
is an admissible decomposition

of sM, sM(A) = s(A) is an immediate consequence of Definition 6.3.
Let φ1, φ2 ∈ F and chose admissible decompositions s1, g1 of φ1 and

s2, g2 of φ2 as in Lemma 5.19. Given λ, μ ∈ C, it is easily checked that
λs1 +μs2, λg1 +μg2 is an admissible decomposition of λφ1 +μφ2. Therefore,
the linearity Ξ yields

(λφ1 + μφ2)(A) = (λs1 + μs2)(A) + Ξ
(∫

σ(Θ(A))

(λg1 + μg2) dE

)

= λ

(

s1(A) + Ξ
( ∫

σ(Θ(A))

g1 dE

))

+ μ

(

s2(A) + Ξ
(∫

σ(Θ(A))

g2 dE

))

= λφ1(A) + μφ2(A).

Obviously s#
1 , g1 is an admissible decomposition for φ#

1 ∈ F . From Ξ(D∗) =
Ξ(D)+ we derive

φ1(A)+ = s1(A)+ + Ξ
(∫

σ(Θ(A))

g1 dE

)+

= s#
1 (A) + Ξ

(∫

σ(Θ(A))

g1 dE

)

= φ#
1 (A).
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Finally, we have

φ1(z) · φ2(z) =
∏

k=1,2

(

(sk)M(z) + gk(z) ·
n∑

j=1

qjM(z)

)

= (s1s2)M(z)

+

(

s1(z)g2(z) + s2(z)g1(z) + g1(z)g2(z)

n∑

j=1

qj(z)

)

·
n∑

j=1

qjM(z)

for all z ∈ σ(Θ(A)) ∪ Zq. Since

σ(Θ(A))\ZR

q � z �→ s1(z)g2(z) + s2(z)g1(z) + g1(z)g2(z)
n∑

j=1

qj(z) ∈ C

is bounded, measurable and vanishes on Zq, s1s2, s1g2 + s2g1 + g1g2

∑n
j=1 qj

is an admissible decomposition in the sense of Lemma 5.19 for φ1φ2 ∈ F ; see
Remark 5.15. Hence,

(φ1 · φ2)(A) = (s1 · s2)(A) + Ξ
(∫

σ(Θ(A))

(s1g2 + s2g1 + g1g2

n∑

j=1

qj) dE

)

Since by [6, Lemma 5.11] and (4.2) we have Ξ(D1D2T
+T ) = Ξ(D1)Ξ(D2),

Ξ(Θ(C)D) = CΞ(D), Ξ(DΘ(C)) = Ξ(D)C with T+T =
∑n

j=1 qj(Θ(Aj)),
the second addend on the right hand side equals to

Ξ
(

s1(Θ(A))
∫

σ(Θ(A))

g2 dE + s2(Θ(A))
∫

σ(Θ(A))

g1 dE

+
(∫

σ(Θ(A))

g1g2 dE
) n∑

j=1

qj(Θ(Aj))
)

= s1(A)Ξ
( ∫

σ(Θ(A))

g2 dE

)

+ Ξ
(∫

σ(Θ(A))

g1 dE

)

s2(A)

+ Ξ
( ∫

σ(Θ(A))

g1 dE

)

Ξ
( ∫

σ(Θ(A))

g2 dE

)

Therefore,

(φ1 · φ2)(A) =

(

s1(A) + Ξ
(∫

σ(Θ(A))

g1 dE

))

·
(

s2(A) + Ξ
(∫

σ(Θ(A))

g2 dE

))

= φ1(A)φ2(A)

Finally, we shall show that φ(A) ∈ A′′. Clearly, given an admissible decom-
position s, g with s ∈ C[z1, . . . , zn] we have s(A) ∈ A′′. If C ∈ A′ ⊆⋂n

j=1(TjT
+
j )′, then Θ(C) ∈ {Θ(A)}′ because Θ is a homomorphism. By the

spectral theorem in Hilbert spaces Θ(C) commutes with E(Δ) for all Borel
sets Δ. Consequently, it commutes with
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D :=
∫

σ(Θ(A))

g dE.

From [6, Lemma 5.11] we infer Ξ(D)C = Ξ(DΘ(C)) = Ξ(Θ(C)D) = CΞ(D).
Hence, Ξ(D) ∈ A′′ and finally φ(A) ∈ A′′. �

Proposition 6.5. The functional calculus φ �→ φ(A1, . . . , An) in Theorem 6.4
is bounded, when F is provided with ‖.‖F and Lb(K) is provided with the
operator norm which originates from some compatible Hilbert space scalar
product on K.

Proof. The mapping F � φ �→ s ∈ C[z1, . . . , zn] from Lemma 5.10 is linear.
Thereby, the coefficients of s depend continuously on φ; see Remark 5.11.
Consequently, also s(A) depends continuously on φ.

By Lemma 5.20 the bounded g ∈ B(σ(Θ(A)) ∪ ZR

q ,C), such that s, g is
an admissible decomposition of φ, depends continuously on φ. Thus,

∫
g dE,

and in turn Ξ(
∫

g dE), depend continuously on φ. �

7. Spectrum of A

As in the previous section let A ∈ Lb(K)n be a tuple of pairwise commuting,
bounded, self-adjoint and definitizable operators where for j = 1, . . . , n we
denote by qj ∈ R[ζ]\{0} a definitizing polynomial for Aj . We shall employ
the same notation as the previous sections. The aim of the present section is
to describe the spectrum σ(A) (⊆ C

n ) of the tuple A; see Definition 2.1.

Remark 7.1. If w 
∈ σ(A), then (A−w) ·B =
∑n

j=1(Aj −wj)Bj = I for some
B = (Bj)n

j=1 ∈ (A′′)n ⊆ Lb(K)n. Taking adjoints and using the fact that A′′

is abelian yields
∑n

j=1(Aj − w̄j)+B+
j = I which means w 
∈ σ(A). Hence,

σ(A) = σ(A).

Since Θ : (TT+)′ → (T+T )′ constitutes a ∗-homomorphism, we also have

σ(Θ(A)) ⊆ σ(A). ♦

Remark 7.2. Choosing sj ∈ C[z1, . . . , zn] with sj(z1, . . . , zn) = zj we obtain
from Theorem 6.4 (sj)M(A) = Aj .

Let w ∈ Zq be an isolated point of σ(Θ(A)) ∪ Zq and let e be the
multiplicative neutral element of C

I(w); see Remark 5.3. By Example 5.16
the function δwe belongs to F . As δwe ·δwe = δwe the corresponding operator
Pw := (δwe)(A) ∈ A′′ ⊆ Lb(K) constitutes a projection. Since Pw commutes
with all operators of the form φ(A) where φ ∈ F , the range of Pw is invariant
under all these operators φ(A), in particular under Aj for j = 1, . . . , n.

For λ ∈ C
n\{w} we have (sj(w) − λj) = wj − λj 
= 0 for at least one

j ∈ {1, . . . , n}. According to Remark 5.3 (sj − λj)M(w) ∈ C
I(w) is then

invertible with an inverse bj ∈ C
I(w). From

(sj − λj)M · (δwe) = δw

(
(sj − λj)M(w)

)
(⊆ F )
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we derive for x = Pwx ∈ ran Pw

(sj − λj)M(A) · (δwbj)(A)x

=
(
δw((sj − λj)M(w) · bj)

)
(A)x = x.

and conclude that

(Aj − λj)|ran Pw
= Aj |ran Pw

− λjI|ran Pw

has (δwbj)(A)|ran Pw
as its inverse operator. From (2.2) we obtain

λ 
∈ σ
(
(Aj |ran Pw

)n
j=1

)
and in turn σ

(
(Aj |ran Pw

)n
j=1

) ⊆ {w}. ♦

Lemma 7.3. For any point w ∈ Zq\σ(A) we have (δwe)(A) = 0.

Proof. By Remark 7.1 the point w ∈ Zq\σ(A) is isolated in σ(Θ(A)) ∪ Zq.
Hence, by Remark 7.2 the projection Pw := (δwe)(A) ∈ A′′ is well defined.

By assumption the operator tuple A−w (∈ Lb(K)n ) is invertible which
means that

∑n
j=1(Aj − wjI)Bj = I for some B1, . . . , Bn ∈ A′′; see Defini-

tion 2.1. Since Pw and B1, . . . , Bn belong to a commutative subalgebra of
Lb(K), we have B1(ran Pw), . . . , Bn(ran Pw) ⊆ ranPw. This yields

n∑

j=1

(Aj |ran Pw
− wjI|ran Pw

)Bj |ran Pw
= I|ran Pw

,

i.e. w 
∈ σ
(
(Aj |ran Pw

)n
j=1

)
. According to Remark 7.2 σ

(
(Aj |ran Pw

)n
j=1

)
= ∅,

which is only possible if ranPw = 0 or equivalently (δwe)(A) = 0. �

Corollary 7.4. The spectrum of A = (Aj)n
j=1 satisfies

σ(A) = σ(Θ(A)) ∪ (σ(A) ∩ Zq).

Proof. By Remark 7.1 it is enough to show that for λ ∈ C
n\(

σ(Θ(A)) ∪
(σ(A) ∩ Zq)

)
the operator tuple A − λ is invertible.

For every w ∈ σ(Θ(A)) ∪ (σ(A) ∩ Zq) let cw
1 , . . . , cw

n ∈ C be such that
n∑

j=1

(wj − λj)
(
wj − λ̄j + cw

j

) 
= 0.

Such a choice is possible because λ 
∈ σ(Θ(A)) ∪ (σ(A) ∩ Zq) and hence
wj − λj 
= 0 for some j. For sj as in Remark 7.2 the functions

φj := (sj − λ̄j)M +
∑

w∈σ(Θ(A))∪(σ(A)∩Zq)

cw
j (δwe) ∈ F , j = 1, . . . , n,

satisfies (φj(w)
)
(0,...,0)

= (wj − λ̄j + cw
j ) for w ∈ σ(Θ(A))∪ (σ(A)∩Zq). With

dw = 1 − ∑n
j=1(wj − λj)(wj − λ̄j), w ∈ Zq\σ(A) consider

φ :=
n∑

j=1

(sj − λj)M · φj +
∑

w∈Zq\σ(A)

dw(δwe).

We have
(
φ(w)

)
(0,...,0)

=
∑n

j=1(wj − λj)(wj − λ̄j + cw
j ) 
= 0 for w ∈

σ(Θ(A))∪(σ(A)∩Zq) and
(
φ(w)

)
(0,...,0)

= 1 for w ∈ Zq\σ(A). Hence, φ(w) ∈
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C
I(w) is invertible for all w ∈ Zq\σ(Θ(A)). For z ∈ σ(Θ(A))\Zq ⊆ R

n we
have

(
φ(z)

)
(0,...,0)

=
n∑

j=1

(sj(z) − λj) · (sj(z) − λ̄j)

= ‖z − λ‖2
2 ≥ d(λ, σ(Θ(A))) > 0.

We see that all assumptions of Lemma 5.18 are satisfied. Hence, φ−1 ∈
F . If we set Bj = (φ−1 · φj)(A) for j = 1, . . . , n, then we obtain

n∑

j=1

(Aj − λjI)Bj =

(

φ−1 ·
n∑

j=1

(sj − λj)M · φj

)

(A).

By Lemma 7.3 this expression coincides with
⎛

⎝φ−1
n∑

j=1

(sj − λj)M · φj +
∑

w∈Zq\σ(A)

dw(δwe)

⎞

⎠ (A) = (1)M(A) = I.

Thus, A − λ is invertible. �

Lemma 7.5. Let φ ∈ F . If φ(z) = 0 for all z ∈ σ(A), then φ(A) = 0.

Proof. Our assumptions together with Corollary 7.4 implies that φ can be
written as

∑
w∈Zq\σ(A) δwφ(w). By Lemma 7.3 we obtain

φ(A) =
∑

w∈Zq\σ(A)

(δwφ(w))(A)

=
∑

w∈Zq\σ(A)

(δwφ(w))(A) (δwe)(A) = 0.

�

Remark 7.6. The previous result implies for φ ∈ F that φ(A) only depends
φ(z), where z runs in σ(A). Indeed, if φ1(z) = φ2(z) for all z ∈ σ(A), then
by Lemma 7.5 we obtain φ1(A) − φ2(A) = 0 and hence φ1(A) = φ2(A). ♦

Since we can alter the values of a function φ ∈ F at all point in Zq\σ(A)
without changing φ(A), we derive from Lemma 5.18 the following result.

Lemma 7.7. If φ ∈ F is such that φ(z) is invertible in C
I(z) for all z ∈ σ(A)

and such that 0 does not belong to the closure of φ(σ(Θ(A))\ZR

q ), then φ(A)
is invertible. Its inverse coincides with ψ(A) for any ψ ∈ F satisfying ψ(z) =
φ(z)−1, z ∈ σ(A).

8. Normal Operators

In [4] normal operators N ∈ Lb(K) on a Krein space K, which are definitizable
in the sense that their real part A1 := 1

2 (N + N+) and their imaginary part
A2 := 1

2i (N − N+) are definitizable, were considered. The results derived in
that work perfectly fit into our present framework.
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Indeed, for a normal definitizable N ∈ Lb(K) the pair A1, A2 ∈ Lb(K)
constitutes a tuple as considered in Sect. 4. The following result describes the
connection of the spectrum of N and the spectrum of the tuple (A1, A2).

Lemma 8.1. Let N be normal and definitizable operator in a Krein space K
and A1, A2 the corresponding real and imaginary part of N . Then we have

σ(N) = {z1 + iz2 : z ∈ σ((A1, A2))}.

Proof. If η ∈ C\σ(N), then (N − η)−1 exists as an element of Lb(K). We set
B1 := (N − η)−1 and B2 := i(N − η)−1. Clearly, B1, B2 ∈ {A1, A2}′′. For
every λ ∈ C

2 which fulfills λ1 + iλ2 = η we have

(A1 − λ1)B1 + (A2 − λ2)B2 =
(
A1 + iA2︸ ︷︷ ︸

=N

− (λ1 + iλ2)︸ ︷︷ ︸
=η

)
(N − η)−1 = I.

Thus, (A1 − λ1, A2 − λ2) is invertible which means that λ ∈ C
2\σ((A1, A2)).

Conversely, for η ∈ C\{z1 + iz2 : z ∈ σ((A1, A2))} the function fM,
where f : C2 → C is defined by f(z) := z1 +iz2 −η, satisfies the conditions of
Lemma 7.7. Therefore, fM has a multiplicative inverse. From fM(A1, A2) =
N − η we finally conclude η ∈ C\σ(N). �

The functional calculus developed in [4] for normal N = A1 + iA2,
definitizable operators on Krein spaces is almost the same as the functional
calculus for the tuple A1, A2 from the present paper. The only difference is
the domain for the functions φ ∈ F . In the present note φ is defined on the
compact subset

σ(Θ(A1),Θ(A2)) ∪ Zq = σ(Θ(A1),Θ(A2)) ∪ ZR

q
︸ ︷︷ ︸

⊆R2

∪Z i
q (8.1)

of C2 whereas in [4] φ is defined on

σ(Θ(N)) ∪ {z1 + iz2 : z ∈ ZR

q }
︸ ︷︷ ︸

⊆C

∪ Z i
q

︸︷︷︸
⊆C2

, (8.2)

where according to Lemma 8.1 the spectrum of the normal operator Θ(N) =
Θ(A1) + iΘ(A2) on the Hilbert space H coincides with {z1 + iz2 : z ∈
σ
(
(Θ(A1),Θ(A2))

)}. Since R
2 � z �→ z1 + iz2 ∈ C is bijective, the sets

in (8.1) and (8.2) correspond to each other.

9. Compatibility of the Spectral Theorem

In this section we want to regard the spectral calculus for a tuple AN =
(Aj)n

j=1 compared to the spectral calculus for AM := (Aj)j∈M , where M ⊆
N = {1, . . . , n} has m elements. For this we again fix definitizing polynomials
qj ∈ R[ζ]\{0} for Aj , j = 1, . . . , n, and set q

N
= (qj)n

j=1 and q
M

= (qj)j∈M .
We will employ the notation used in Sect. 4.

Moreover, we shall denote the function class introduced in Definition 5.13,
which corresponds to AM , by MM and FM , and the function class, which
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corresponds to AN , by MN and FN . Finally, we introduce the projection
π : CN → C

M defined by

π(z) := (zj)j∈M .

Note that by Theorems 2.5, 2.4 and (3.4)

π
(
σ(ΘN (AN ))

)
= σ(ΘN (AM )) ⊇ σ(ΘM (AM )).

As Zq
N

=
∏n

j=1 Zqj
and Zq

M
=

∏
j∈M Zqj

we also have π(Zq
N

) = Zq
M

.
According to (2.3) we have π(σ(AN )) ⊆ σ(AM ) which by Corollary 7.4
implies

π
(
σ(ΘN (AN )) ∪ Zq

N

)
= σ(ΘM (AM )) ∪ Zq

M
.

Definition 9.1. For φ ∈ MM we define φ ◦ π ∈ MN by

(φ ◦ π(z))α =

{
φ(π(z))π(α), if αj = 0 for all j ∈ N\M

0, otherwise
(9.1)

for α ∈ I(z) and z ∈ σ(ΘN (AN )) ∪ Zq
N

. Here I(z) ⊆ Z
N is defined as in

(5.2) on the base of tuple AN . ♦

For z ∈ σ(ΘN (AN )) ∪ Zq
N

we conclude from z ∈ ZR

q
N

that π(z) ∈ ZR

q
M

and π(α) ∈ [0, dq
M

(π(z))� for all α ∈ [0, dq
N

(z)� and from z ∈ Z i
q

N
that

π(z) ∈ Zq
M

and π(α) ∈ [0, dq
M

(π(z))) for all α ∈ [0, dq
N

(z)). Thus, φ ◦ π as
defined in (9.1) belongs to MN .

Lemma 9.2. For every φ ∈ FM we have φ ◦ π ∈ FN .
Moreover, if for s ∈ C[zj , j ∈ M ] we denote by s ◦π the polynomial s as

an element of C[zj , j ∈ N ], then (s ◦ π)MN
= sMM

◦ π; see Definition 5.7.

Proof. For w ∈ Zq
N

such that w is not isolated in σ(ΘN (AN )) ∪ Zq
N

and
such that π(w) ∈ Zq

M
is not isolated in σ(ΘM (AM )) ∪ Zq

M
we have

φ(ζ) =
∑

β∈[0,dqM
(π(w)))

(
φ(w)

)
β
(ζ − π(w))β + O

(

max
j∈M

|ζj − wj |dqj
(wj)

)

as σ(ΘM (AM ))\ZR

q
M

� ζ → π(w). Substituting ζ = π(z) with z ∈ σ(ΘN (AN ))
\ZR

q
N

and employing (9.1), (φ◦π(z))α = 0 for all α not satisfying αj = 0, j ∈
N\M , and the fact that (z −w)α = (π(z)−π(w))π(α) for αj = 0, j ∈ N\M ,
yields

φ(π(z)) =
∑

α∈[0,dqN
(w))

(
φ(w)

)
α
(z − w)α + O

(

max
j∈M

|zj − wj |dqj
(wj)

)

as σ(ΘN (AN ))\ZR

q
N

� z → w. From maxj∈M |zj−wj |dqj
(wj) = O(maxj∈N |zj−

wj |dqj
(wj)) we obtain φ ◦ π ∈ FN .
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If w ∈ Zq
N

is such that w is not isolated in σ(ΘN (AN ))∪Zq
N

and such
that π(w) ∈ Zq

M
is isolated in σ(ΘM (AM )) ∪ Zq

M
, then zj − wj = 0 for

j ∈ M and for z ∈ σ(ΘN (AN ))\ZR

q
N

sufficiently close to w. Hence,

φ(π(z)) = φ(π(w)) =
∑

α∈[0,dqN
(w))

(
φ(w)

)
α
(z − w)α

for z ∈ σ(ΘN (AN ))\ZR

q
N

sufficiently close to w.
In order to verify the final assertion, it is obviously enough to show that

(s ◦ π)MN
(z) = (sMM

◦ π)(z) for z ∈ Zq
N

. In fact, we have

1
α!

Dαs ◦ π(z) = 0 =
(
(sMM

◦ π)(z)
)
α

if αj 
= 0 for some j ∈ N\M and

1
α!

Dαs ◦ π(z) =
1

π(α)
Dπ(α)s(π(z)) =

(
sMM

(π(z))
)
π(α)

=
(
(sMM

◦ π)(z)
)
α

if αj = 0 for all j ∈ N\M . �

Remark 9.3. It is straight forward to verify that FM � φ �→ φ ◦ π(z) ∈ FN is
linear and respects multiplication on F . ♦

Corollary 9.4. If s, g is an admissible decomposition of φ ∈ FM in the sense
of Lemma 5.19 with s ∈ C[zj , j ∈ M ] and a measurable and bounded g :
σ(ΘM (AM )) ∪ Zq

M
→ C, then s ◦ π ∈ C[zj , j ∈ N ] and h : σ(ΘN (AN )) ∪

Zq
N

→ C is an admissible decomposition of φ ◦ π ∈ FN where

h(z) = g(π(z)) ·
∑

j∈M qj(zj)
∑

j∈N qj(zj)
, z ∈ σ(ΘN (AN )) ∪ Zq

N
.

Proof. By Lemma 5.19 we have

φ = sMM
+ g ·

⎛

⎝
∑

j∈M

(qj)MM

⎞

⎠

with a bounded an measurable function g|σ(ΘM (AM ))\ZR
qM

. By Proposition 4.2
h|σ(ΘN (AN ))\ZR

qN

is also bounded and measurable.

As g|ZqM
≡ 0 we conclude from Remark 9.3 and Lemma 9.2 that φ ◦

π(w) = (s ◦ π)MN
(w) and h(w) = 0 for w ∈ Zq

N
. For z ∈ σ(ΘN (AN ))\ZR

q
N

we have

φ ◦ π(z) = sMM
◦ π(z) + g(π(z)) ·

(
∑

j∈M

(qj)MM
◦ π(z)

)

= (s ◦ π)MN
(z) + g(π(z)) ·

(
∑

j∈M

qj(zj)

)
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= (s ◦ π)MN
(z) + h(z) ·

(
∑

j∈N

qj(zj)

)

= (s ◦ π)MN
(z) + h(z) ·

(
∑

j∈N

(qj)MN
(z)

)

.

�

Theorem 9.5. For every φ ∈ FM we have

φ(AM ) = (φ ◦ π)(AN )

where φ◦π is as in Lemma 9.2, φ(AM ) is as in Definition 6.3 defined for the
tuple AM and (φ ◦ π)(AN ) is as in Definition 6.3 defined for the tuple AN .

Proof. Let s, g be an admissible decomposition of φ ∈ FM . By Definition 6.3
we have

φ(AM ) = s(AM ) + ΞM

(∫

σ(ΘM (AM ))

g dF

)

,

where F denotes the common spectral measure of ΘM (AM ) as in Theo-
rem 2.2. By Theorem 2.5 we have F (Δ) = EM (π−1(Δ)) for Borel-subsets
Δ ⊆ C

M where EM denotes the common spectral measure of ΘM (AN ).
Together with (3.9) we derive

φ(AM ) = s(AM ) + ΞM

(∫
g ◦ π dEM

)

= s(AM ) + ΞN

(

RM/NR∗
M/N

∫
g ◦ π dEN

)

,

where EN denotes the common spectral measure of ΘN (AN ).
Since g ◦ π vanishes on Zq

N
, we have

∫
g ◦ π dEN =

∫
Cn\ZqN

g ◦ π dEN .

According to (4.3) we obtain

φ(AM ) = (s ◦ π)(AN ) + ΞN

( ∫
g(π(z)) ·

∑
j∈N qj(zj)

∑
j∈M qj(zj)

· dEN (z)
)

.

According to Corollary 9.4 and Definition 6.3 this expression coincides with
(φ ◦ π)(AN ). �
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