QUASI GELFAND TRIPLES

NATHANAEL SKREPEK

ABSTRACT. We generalize the notion of Gelfand triples (also called Banach-
Gelfand triples or rigged Hilbert spaces) by dropping the necessity of a contin-
uous embedding. This means in our setting we lack of a chain inclusion. We
replace the continuous embedding by a closed embedding of a dense subspace.
This notion will be called quasi Gelfand triple. These triples appear naturally,
when we regard the boundary spaces of spatially multidimensional differential
operators, e.g., the Maxwell operator. We will show that there is a smallest
space where we can continuously embed the entire triple. Moreover, we will
show density results for intersections of members of the quasi Gelfand triple.
Finally, we show that every quasi Gelfand triple can be decomposed into two
“ordinary” Gelfand triples.

1. INTRODUCTION

Normally, when we talk about Gelfand triples we have a Hilbert space X and a
reflexive Banach space X, that can be continuously and densely embedded into Ajp.
The third space A_ is given by the completion of Xy with respect to

9, f
lole = sup Lo:Sil,

rex\foy I fllxs
The duality between X, and X_ is given by

<ga f>X_,X+ = khm <gka f>X07
—00

where (gi)ren is a sequence in Xy that converges to ¢ in X_. The space X_ is then
isometrically isomorphic to X’.. The theory of Gelfand triples was introduced by
ILM. Gelfand and A.G. Kostyuchenko [7]. The concept has been refined over time.
In the introduction of [5] they give a short historical overview of Gelfand triples.

We want to weaken the assumptions such that the norm of Ay is not necessarily
related to the norm of Xj. Hence, we cannot expect a continuous embedding of X
into Xy. However, we still want to construct the dual X_ in terms of Aj.

In [8] this generalized idea appears in Appendix to IX Example 3, but is not
further investigated. Moreover, this idea appears in [3, Sec. 2.11] under the name
triplets of spaces. However, they only scratch the surface as the section is three
pages long. In [5] this concept was treated seriously, the authors call it ¢riples of
closely embedded Hilbert spaces. The motivation were weighted Sobolev and L2
spaces, where the positive weight is neither bounded from above nor from below.
Independently, [10] also developed this generalization of Gelfand triples under the
name quasi Gelfand triples, motivated by boundary spaces of differential operators,
e.g., the Maxwell operator. This led to a characterization of well-posed boundary
conditions for linear (spatially multdimensional) port-Hamiltonian systems. In [6]
the authors compare the notions triplets of spaces and triples of closely embedded
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Hilbert spaces and give conditions when they coincide. However, we will show in
Appendix A that all of these concepts (triplets of spaces, triples of closely embedded
Hilbert spaces and quasi Gelfand triples) coincide always (no condition needed).

In all previous approaches A, was a Hilbert space. Here, amongst others, we lift
the setting of [10] to Banach spaces. So the beginning will be relatively similar to
the introduction of quasi Gelfand triples in [10]. This lifting has also be done in
the Ph.D. thesis [9]. However, we go beyond the refinements of [9] and show that
there exists a smallest space where we can structure preservingly embed the entire
quasi Gelfand triple in Section 5. Furthermore, we show a bijective relation between
quasi Gelfand triples and Gram operators in Section 6. This connection to Gram
operators has also been discovered in [5] or it was actually the starting point of
their journey. They call the Gram operator the Hamiltonian of the triple. However,
we take the next step and utilize this connection to the Gram operator to construct
a decomposition of the quasi Gelfand triple into two “ordinary” Gelfand triples.

In [4] the authors construct suitable boundary spaces for the tangential trace
and the twisted tangential trace that correspond to the curl operator. These spaces
naturally form a quasi Gelfand triple with L2(9S)) as pivot space. However, they
did not pay a lot of attention to this additional structure as they develop their
theory particular for the H(curl, ) traces (tangential and twisted tangential trace).
Moreover, they also give an explicit decomposition of the quasi Gelfand triple into
two “ordinary” Gelfand triple (without calling it that).

In Section 3 we will bring up the setting of [4] as a motivation for the notion
of quasi Gelfand triple. However, it is also suitable for other pairs of differential
operators, e.g., (symCurl, Curl), (CurlCurl”, CurlCurl"), (symGrad, Div), etc.

There is also a link to the notion of quasi boundary triples, which was introduced
in [2]. The combination of boundary triples and quasi Gelfand triples is not entirely
the same as quasi boundary triples, however both can be used to overcome limitations
of boundary triples alone.

2. PRELIMINARY

Since we will often switch between Hilbert space inner products and dual pairings,
it is more convenient to always regard the anti-dual space instead of the dual space,
which we will do. The anti-dual space is the space of all continuous antilinear
mappings from the vector space to C. Moreover, we will use a generalized concept
for (unbounded) linear operators, namely linear relations. The following notion
of linear relations, dual pairs and adjoints with respect to dual pairs are carefully
covered in [9, Ch. 1, Ch. 2]. Linear relations in Hilbert spaces are also properly
introduced in [1].

A linear relation T between the vector spaces X and Y is a linear subspace of
X xY. Clearly, every linear operator is also a linear relation (we do not distinguish
between a function and its graph). For linear operators we have [y ] € T is equivalent
to Tz = y. We will use the following notation

kerT :={zx e X|[§] €T}, ranT ={yeY |Jx:[y]| €T},
mulT ={yeY|[)] €T}, domT ={xe X|y:[y] €T}
Thus, T is single-valued (an operator), if mulT = {0}. The closure T of a linear
relation T is the closure in X x Y. Note that every linear relation is closable. Also

every operator has a closure as a linear relation, but its closure can be multi-valued.
Therefore, showing mulT = {0} is necessary, even if mulT = {0}.

Definition 2.1. Let X and Y be Banach spaces and let (-,-)y x: Y x X — C be
continuous and sesquilinear (linear in the first argument and antilinear in the second
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argument). We define

!
\IJ:{Y%X/’ and@:{X%Y’
y = (U)X, r = {T)yx.
If U is isometric and bijective, then we say that (X,Y) is a (anti-)dual pair and
(-, )v,x is its (anti-)dual pairing.
We define
(T y)xy = (¥, 2)v.x,
which is again a sesquilinear form.
If also ® is isometric and bijective, then we say that (X,Y") is a complete (anti-)-
dual pair.

Clearly, (X, X’) is a dual pair with the canonical dual pairing (', z) x/ x = 2/(z)
and it is complete, if X is reflexive. For a Hilbert space (H, H) is a complete
dual pair with the inner product as dual pairing (z,y)y,x = (x,y)n. However,
if we think of the Sobolev space H!(R) there are two “natural” possible dual
pairings: the standard Hilbert space (complete) dual pair (H!(R),H!(R)) and
the dual pair that is induced by the L? inner product (H*(R), H"!(R)) given by
(T, ) ), H-1(R) = liMy—00 (%, Yn)r2(R)- Hence, in order to avoid saying both H'(R)
and H™1(R) is the dual space of H!(R), which can lead to confusion, we prefer the
term (complete) dual pair.

Definition 2.2. Let (X7,Y7), (X2,Y3) be dual pairs and A a linear relation between
X7 and X5. Then we define the adjoint linear relation by

A*Yaxyi — { Bj €Yy x Y1 | (Y2, 22)vs. x5 = (Y1, 21)y;,x, for all [ij € A}.

We will just write A*, if the dual pairs are clear.

For a Banach space X, we will regard the dual pair (X, X’) for the adjoint, if no
other dual pair is given. Similar, for a Hilbert space H we will regard the dual pair
(H, H), if no other dual pair is given.

Note that this definition matches the usual Hilbert space adjoint, if A is a densely
defined operator between two Hilbert spaces.

Remark 2.3. If A is an operator (mulA = {0}) from X; to Xo, then we can
characterize the domain of A* by

y2 € domA* < domA >z — (Y2, AT1)y,, x, Is continuous w.r.t. ||| x,.
Moreover, we have the following relations
ker A* = (ran A)* and mul A* = (dom A)=,
where M~ denotes the annihilator space of M (which is the orthogonal complement

in the Hilbert space case).

3. MOTIVATION

Let © C R? be a bounded open set with bounded Lipschitz boundary. For
f,9 € C°(R?) we have the following integration by parts formula:
(div f, g)12(0) + (f; grad g)12(q) = (V- Y0 f,%09)L2(09) 5
where v is the normal vector on 92 and g is the boundary trace. It is also well
known that we can extend this formula for f € H(div, ) and g € H!(Q):
<diV f, 9>L2(sz) + <f7 grad 9>L2(sz) = <'7va 709>H—1/2(ag)7H1/2(aQ)7

where ~, is the continuous extension of v - vy. In this extension we stumble over
the Gelfand triple (H"2(092),L2(99Q), H~"/2(09Q)). However, in general such an
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integration by parts formula will not automatically lead to such an extension where
we can replace the L2 inner product on the boundary by a dual pairing that comes
from a Gelfand triple with L2(9Q) as pivot space. For example for f,g € C*°(R3)
we have

(curl f, g)r2(0) + (f;curlg)r2 (o) = (¥ X 0 f, (v X Y09) X V)12(00) (1)

but contrary to the previous case neither v X yg nor (v x 79) X v can be continuously
extended to H(curl, ) such that its codomain is still L2(d€2) (or can be continuously
embedded into L2(99)), see [10, Ex. A.4]. Hence, in order to better understand the
relation between the extension of (1) to H(curl,€2) and the L?(92) inner product
we need a more general tool than Gelfand triples. In order to try to find a suitable
boundary space such that we can extend v x vy on H(curl, ), we endow ran(v x vg)
with the range norm that comes from H(curl, Q). This gives a norm on a dense
subspace of L2(09) = {¢ € L2(8Q) | v - f = 0} that is unrelated to [|-||r2(an). This
setting will be our starting point. This particular problem was treated in [10].
Here we want to discover the world of quasi Gelfand triples without any particular
applications in mind (or maybe with Conjectures 6.7 and 6.8 in mind).

3.1. Starting point. We will have the following setting: Let Xy be a Hilbert space
with the inner product (-,-)x, and (-,-)x, be another inner product on Ap (not
necessarily related to (-, ) x,), which is defined on a dense (w.r.t. ||-||x,) subspace
D, of Xy. We denote the completion of Dy w.r.t. ||-|x, ([flla, = /{F x)
by X,. This completion is, by construction a Hilbert space with the extension of
(*,-)a,, for which we use the same symbol. Now we have D is dense in Xy w.r.t.
||, and dense in X} w.r.t. ||| x, . Figure 1 illustrates this setting.

Note that X, as a Hilbert space, is automatically reflexive. For the further
construction the crucial property of X is its reflexivity. Hence, we will weaken the
previous setting such that X, is only a reflexive Banach space:

Xo Hilbert space endowed with (-, ) x,.
D, dense subspace of Xy (w.r.t. ||-|| x,)-
|||+, another norm defined on D,.

X, completion of D with respect to ||-[|x, is reflexive.

Xo

FIGURE 1. Setting of Xy, D, and X,.

Example 3.1. Let Xy = (%(Z\ {0}) with the standard inner product (z,y)x, =
> T Tn + T—nY—pn. We define the inner product

LS
1
<l'7y>X+ = E ngxn%"' ﬁx—ny—n
n=1
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and the set Dy = {f € X || fl|x. < +oo}. Clearly, this inner product is well-
defined on Dy . Let e; denote the sequence which is 1 on the i-th position and 0
elsewhere. Since {e;|i € Z \ {0}} is a orthonormal basis of Xy and contained in
Dy, Dy is dense in Xy. The sequence (Y. e_;)
respect to ||-|| x, , but not with respect to |||,
Definition 3.2. We define
9, f)x
ol = sup LS00l
febi\{o} ||fHX+

We denote the completion of D_ w.r.t. ||-||x_ by X_. We will also denote the
extension of ||-||x_ to X_ by ||-[|x_-

nen 18 @ Cauchy sequence with

forge Xy and D_ = {g € X ‘ llgllx_ < Jroo}.

Remark 3.3. By definition of D_ we can identify every g € D_ with an element of
X! by the continuous extension of

D C,
1;[}91 { + 7

f = <g7 f>Xo7
on X, . We denote this extension again by 1),. By definition of D_ we have
¥glla; = llglla_ for g € D_. Hence, we can extend the isometry
. { D_ — X,
g = Uy

by continuity on X_, this is extension is again denoted by ¥. So X_ can be seen as
the closure of D_ in A,

We can define a dual pairing between Xy and A_ by
<ga f>X7,X+ = <lI/ga f>XL,X+'

However, this does not necessarily make (X, X_) a dual pair in the sense of
Definition 2.1, because we do not know whether U is surjective.

Lemma 3.4. D_ is complete with respect to ||gllx_nx, = /llgl%, + 9%

Proof. Let (gn)nen be a Cauchy sequence in D_ with respect to ||-||x_nx,- Then
(gn)nen is a convergent sequence in Xy (w.r.t. ||-||x,) and a Cauchy sequence in D_
(w.r.t. ||-||x_). We denote the limit in Xy by go. By definition of ||-||x_ we obtain
for f € Dy

g0 Fawl = 1m0 (g, | < T Jlgalle 7], < ClflLx,

and consequently go € D_.
Let € > 0 be arbitrary. Since (g )nen is a Cauchy sequence with respect to ||| x_,
there is an ng € N such that for all f € D, with ||f|lx, =1

e .
|<gn_gm7f>Xo|S§, if n,m>ng

holds true. Furthermore, for every f € ﬁ+ there exists an m; > ng such that

el fll .
1{90 = Gms» [lao| < 2X+ , because g, — go w.r.t. ||||x,. This yields

|<90—9mf>X0| < |<90—9mf,f>)€0| ‘<gmf_gn7f>)(0|

< + <e, if n>ng.
(FAIE 11l 2, (FAIE
Since the right-hand-side is independent of f, we obtain
||90 - gnH_;y; = sup w < €, if n > no.
rebioy Iy

Hence, gq is also the limit of (g, )nen with respect to ||-||x_ and consequently the
limit of (g, )nen with respect to ||| x_na, - a
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Strictly speaking D+ and D_ are subsets of X, but sometimes we rather want to
regard them as subsets of X} and X_, respectively. Hence, introduce the following
embedding mappings

. D, C D_CcXx_ X
Lyt {D+—X+ - X, and ¢_: { = - o,
fo= g = g

This allows us to distinguish between f € D as element of X, and 7+ (f) as element
of Xy, if necessary. Clearly, the same for g € D_.

Lemma 3.5. The embedding iy is a densely defined operator with rani, is dense
in Xy and ker iy = {0}. Furthermore, the embedding t_ 1is closed and kert_ = {0}.

Proof. By assumption on D and definition of X, the embedding 7, is densely
defined and has a dense range. Clearly, keri; = {0} and kert— = {0}. By
Lemma 3.4 +_ is closed. a

Lemma 3.6. Let i, = L_:(OXX,* denote the adjoint relation (w.r.t. the dualities
(X0, Xo) and (X4, X)) of iy. Then T% is an operator (single-valued, i.e., muli’ =
{0}) and ker . = {0}. Its domain coincides with D_ and i%t_: D_ C X_ — X!
is isometric.

If keri, = {0}, then rani% is dense in X/ .
Proof. The density of the domain of iy yields muli% = (domi;)* = {0}, and

ran Z+X0 = X yields ker . = {0}. The following equivalences show dom i} = D_:

gedomi, & Di>fr(g,i4f)x is continuous w.r.t. |-[|x,

o lohul
sebioy IF 1l
& geD_.
For g e D_ C X_ we have
(=g, ), | (g, Pl
lgllx. = sup "= sup = |3 e—gllxr,
febi\{o} ||fHX+ feDi\{o} ||fHX+

which proves that 7% ¢_ is isometric.
Note that the reflexivity of X, implies iy = %*. If keriy = {0}, then the
following equation implies the density of ran i in X7
{0} = keriy = kerit* = (rani})". a

Remark 3.7. As mentioned in Remark 3.3 every g € D_ can be regarded as an
element of X} by 1)y. Let g € D_, f € X} and (fy)nen in Dy converging to f w.r.t.
||-||x,. Since D_ = dom i, we have

(g, flay . x, = nli_>Hgo<g7fn>X0 = nﬁ_{T;O(L—gJJrfn)XO = (I 1y, f>X_;_,X+
and consequently ¢y = i t_g. Hence, ¥D_ =it _D_ =rani}.
Proposition 3.8. The following assertions are equivalent.

(i) There is a Hausdorff topological vector space (Z,T) and two continuous
embeddings ¢x, : Xy — Z and ¢x,: Xo — Z such that the diagram
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commutes.

(i) If Dy 3 fo — 0 w.r.t. |I-|lx, and lim, o fr exists w.r.t. ||-||x,, then this
limit is also 0 and if b+ S fo = 0wt |||l x, and im,_, o fr exists w.r.t.
||| x, , then this limit is also 0.

(iil) iy: Dy C Xy — Xo, f — f is closable (as an operator) and its closure is
imjective.

(iv) D_ is dense in Xy and dense in X}, i.e., WD_ is dense in X/ .

Proof. We will follow the strategy (i) = (ii) = (iii) = (iv) = ().

(i) = (ii): Let (fn)nen be a sequence in D such that f,, — fwart. Xy and f,, — f
w.r.t. Xy. Since T is coarser than both of the topologies induced by these norms,
we also have

f
T/ in Z.

\T

f
Since T is Hausdorff, we conclude f = f . Hence, if either f or f is 0, then also
the other is 0.

In

(ii) = (iil): If (fn, fn)nen is a sequence in 7y that converges to (0, f) € Xy x Ap,
then f = 0 by (ii). Hence, mul7, = {0} and consequently 7 is closable. On the
other hand, if (f,, fn)nen is a sequence in i that converges to (f,0), then f =0
by (ii). Consequently, keri; = {0} and 7, is injective.

(iif) = (iv): We have (dom %)+ = mul#%* = muli;. Since i is closable, we have
mulz; = {0}, which implies that dom % is dense in Xj. By Lemma 3.6 dom 7,
coincides with D_, which gives the density of D_ in Xj.

The second assertion of Lemma 3.6 yields that rani’ is dense in X’ . By
Remark 3.7 we have ran % = WD_ and therefore the density of WD_ in X7

(iv) = (i): Let Y := D_ be equipped with

lglly = llgllx-nxe = 1/ lgl%_ + llglZ,-

We define Z :=Y” as the (anti-)dual space of Y. Then we have

1)l < M lxollgllxe < [1f 1xollglly for feX,geV
and  [(f, 73 g, 20| < [fllxy 153902 < [fllxsllglly for feXy,geY.

=lgllx_

Hence, ¢x,: f = (f,")x, and dx, : f+— (f, Zj-'>X+in are continuous mappings
from Xy and A&, respectively, into Z. The injectivity of these mappings follows
from the density of D_ in Xy and D_ in X} (% D_ dense in X’} ), respectively.

For f € D we have
Ox, f=(f, 00 ) a0 = (0, )ay =, 0Tt f
and consequently the diagram in (i) commutes. a
If one and therefore all assertions in Proposition 3.8 are satisfied, then X, N
Xy is defined as the intersection in Z and complete with the norm ||-||x,~x, =
1%, + [I-|%,- Moreover, we define Dy as the closure of Dy in X NX, (wor.t.

Il 7 na,)- Note that although Xy N Xy may depend on Z, D is independent of Z.
We will denote the extension of i, to Dy by ¢4, which can be expressed by ¢ = 7.
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The adjoint +% coincides with 7% . Also D_ does not change, if we replace ﬁJr by
D in Definition 3.2 and all previous results in this section also hold for Dy and ¢4
instead of Dy and 7y, respectively. If 7 is already closed, then Dy = D,..
Lemma 3.9. Let one assertion in Proposition 3.8 be satisfied. Let Z =Y, where
Y = D_ endowed with ||g|ly = ||gllx_nx, = \/llgll5_ +lgll3, (from Proposition 3.8
(iv) = (i) ). Then we have the following characterization for Dy :

e D, =dom.*,

e D, =X, NXyinY'
Proof. Note that for g € D_ we have g = (Li)_lbig and that ¢% ¢_ is isometric from

D_ =dom:_ C X_ onto rant* = dom(:%)~" C X{. The following equivalences
show the first assertion:
fedom* < D_ > g (f,1_g)x, is continuous w.r.t. ||| x_
& D_3g0 (f, (%) i i_g)x, is continuous w.r.t. |||
& dom(ey) ™t 3 h (f,(L}) " h)x, is continuous w.r.t. (R{ES

& fedom ((13)") =dome;t =rani = D,

For the second characterization we define Py = Xy N Xy and we define P_
analogously to D_ in Definition 3.2:
(9, [} x|

lgle. = sup and P_ = {g € X | [gllp_ < +oo}.

repgor Il

Clearly, |lg|lx_ < ||lg|lp_ for g € P_ and consequently P_ C D_. Furthermore, we
can define tp, : P C Xy — Ap, f — f analogously to 7. Note that tp,_ is closed
due the completeness of (X} N Xo, [|*[|x,nx,). Then we have dom:p, = P— and
i+ € vp, and therefore v C 07} For g € D_ and f € P, we have, by definition of
P+:X+QXO iHZ,

€9, Pl aeol = Kk g, Flag x| < [T gllay 1112y = llglla [ f 1l

which yields [|g[|p_ < [[g[lx_. Hence, P~ = D_, 1 =1} and tp, = Ty, which is
=X NX,

equivalent to Py =X, NAy =D R D.. a

Theorem 3.10. Let one assertion in Proposition 3.8 be satisfied. Then the contin-

uous extension of vy 1_ denoted by v 1 equals ¥. Moreover, ¥ is surjective and

(X4, X_) is a complete dual pair with

<g7 f>X7,X+ = <\I/ga f>Xi,X+'

Proof. We have already shown, that ¢%+_g = Wg for g € D_. Since D_ is dense in
X_, we also have (}1_g = W¥g for g € X_.
If one assertion in Proposition 3.8 is true, then all of them are true. Hence, ¥ D_
is dense in X} and because V is isometric ran ¥ is closed and therefore ran ¥ = X7} .
Since W is an isomorphism between A_ and X}, it immediately follows that
(X4, X_) is a complete dual pair with the dual pairing (-, )x_ x, - a

Remark 3.11. For f € D, and g € D_ we have
(9, la_xp =Yg, Ny x, = (Beeg, flagxy = (g, 04 F)ae = (9, [ xo-

Since these two sets are dense in X, and X_ respectively, we have for f € X} and
geXx_

<g7f>X7,X+ = lim <gnafm>X07

(n,m)—(oc0,00)
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Xo

L\

L+/ "\,

FicURE 2. Illustration of a quasi Gelfand triple

where (fm)men is a sequence in Dy that converges to f in Xy and (gn)nen is a
sequence in D_ that converges to g in A_.

4. DEFINITION AND RESULTS
The previous section leads to the following definition.

Definition 4.1. Let (X}, X_) be a complete dual pair and X; be a Hilbert space.
Furthermore, let ¢y : dom¢y C Xy — Ap and ¢—: dom:_ C X_ — & be densely
defined, closed, and injective linear mappings with dense range. We call (X, Xy, X_)
a pre-quasi Gelfand triple, if

<9,f>X_,X+ = (L—g,b+f>xo (2)

for all f € dom¢4 and g € dom¢_. The space Ay will be referred as pivot space.
If we additionally have dom:} = ran:_, then we call (X, Xy, X_) a quasi
Gelfand triple.

Figure 2 illustrates the setting of a quasi Gelfand triple. Contrary to the previous
section we will regard the adjoint of ¢4 and ¢— with respect to the complete dual
pairs (X, X_) and (Xp, Ap). Therefore, ¢ is a densely defined operator from Ap
to X_ and ¢* is a densely defined operator from Xy to X;. We could not do this
before, because we did not know from the beginning that (X}, X_) is a complete
dual pair.

Example 4.2. Let Xy = LP(R), X_ = L(R) and X, = L?(R), where p € (1, +00)
and % + % = 1. Then (X;,X_) is a complete dual pair. Note that LP(R) N L%(R) is
already well-defined. We can define

L.{mwmeMme>+ L2(R),
- = f

. J LYR)NL*(R) € LY(R) L*(R),
and (_: { g : J.

These mapping are densely defined, injective and closed with dense range. By
definition of the dual pairing of (LP(R),L4(R)) we have

@ﬁwmmm=4ﬁ®=@ﬁ%=@%uﬁ%
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FIGURE 3. Illustration of a quasi Gelfand triple, where D =ran ¢
and D_ =ran¢_.

for g € LI(R) N L2(R) and f € LP(R) N L%(R). By the Hélder inequality we also
have dom ¢% = ran¢_. Hence, (L?(R),L?(R),LI(R)) is a quasi Gelfand triple.

Note that the mapping ¢ gives us an identification of dom ¢y and ran¢,. Hence,
we can introduce the norm of X} on raniy by | fl|lx, = [|t3' fllx, for f € rancy.
Then the completion of rans with respect to ||-||x, is isometrically isomorphic to
Xy . Accordingly, we can do the same for X_. This justifies the following definition
and Figure 3.

Definition 4.3. For a quasi Gelfand triple (X}, Xy, X_) we define
X.NAy:=ranty and X_NAy:=ranc_.

)

If either ¢y or ¢_ is continuous, then a quasi Gelfand triple is an “ordinary’
Gelfand triple. Clearly, every “ordinary” Gelfand triple is also a quasi Gelfand
triple.

The additional condition dom ¢} = ran._ that makes a pre-quasi Gelfand triple
a quasi Gelfand triple is not crucial as it can always be forced, which we will see
later in Lemma 4.5. In Conjectures 6.7 and 6.8 we ask ourselves, if this condition
is automatically fulfilled. Moreover, the next lemma shows that we can also ask
for the converse condition dom:* = ran:; instead. Note that from (2) we can
immediately see that dom:%} D ran:_ and dom:* D ran:y. Hence, for f € domv,
and g € dom¢_ we have

U L*gmf X_, Xy
<gaf>X,,X+ =(_gytyfla, = <+* ) i 3)
<97L7L+f>)(7’;(+,
which implies ¢} 1_g =g and t* v f = f.

Lemma 4.4. Let (Xy, Xy, X_) be a pre-quasi Gelfand triple with the embeddings v
and v_. Then

dom:/} =ran:. <& dom:” =raniy.

In particular, if (Xy, Xo, X_) is a quasi Gelfand triple, then also dom:* = raniy
holds true.

The proof of this is basically the first part of the proof of Lemma 3.9.
Proof. Let dom ¢’ = ran:_. The following equivalences
fedom* < domi_ 3 g~ (f,t_g)x, is continuous w.r.t. ||-||x_
& dome 3 g (f, (1) ik i_g)x, is continuous w.r.t. |||
=g

& f € dom ((Li)_l)* =dom;' =rancy
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imply dom¢* =rani¢,.
The other implication follows analogously. a

In contrast to “ordinary” Gelfand triple, the setting for quasi Gelfand triple
is somehow “symmetric”, i.e., the roles of X, and X_ are interchangeable, since
neither of the embeddings ¢4 and ¢ has to be continuous.

Lemma 4.5. Let (X1, Xy, X_) be a pre-quasi Gelfand triple with the embeddings
ty and t_. Then there exists an extension i_ of t_ that respects (2) and satisfies
dom % =rani_. In particular, (X, Xy, X_) with 1 and i_ forms a quasi Gelfand
triple.

Proof. Note that ¢} 1_g = g. Hence, ¢} 2 (=" and (¢h)7t 2 v, We define i_ as
(Li)_l. Then clearly rani_ = dom % . For f € dom¢; and g € domi_ we have

(i—gyteflag = (riog, Na_x, = (9, [la_ x,- Q

Alternatively, we could have extended ¢, by setting i, = (¢*)~! in the previous
lemma to obtain a quasi Gelfand triple.

Remark 4.6. If (X, Xy, X_) is a quasi Gelfand triple and (X, X_) is another dual
pair for X4, then also (X}, Xy, X_) is a quasi Gelfand triple.

Lemma 4.7. Let (X, Xp, X_) be a quasi Gelfand triple. Then

1 * —1

*__ —
o= and 1 C =1

Proof. By (3) we have 131_g = g for all g € dom¢. Since rant_ = dom:3 (by
assumption), we conclude that 1% = P

Analogously, the second equality can be shown. a

Theorem 4.8. Let Xy be a reflerive Banach space and Xy be a Hilbert space and
ty: domey C Xy — Ay be a densely defined, closed, and injective linear mapping
with dense range. Then there exists a Banach space X_ and a mapping t— such that
(X4, Xo, X_) is a quasi Gelfand triple.

In particular, X_ is given by Definition 3.2, where Dy =rani.
Proof. We will identify dom ¢4 with ran ¢y and denote it by D. Then item (iii) of
Proposition 3.8 is satisfied. Hence, the corresponding D_ (Definition 3.2) is dense

in Xy and its completion X_ (w.r.t. to ||-||x_) establishes the complete dual pair
(X4, X_), by Theorem 3.10. The mapping

. .{D_QX_ A,

g = g
is densely defined and injective by construction. By the already shown ran:_ = D_
is dense in Ap. Finally, by Lemma 3.5 +_ is closed and by Lemma 3.6 dom (¢} =
D_=ran¢_. (]

Remark 4.9. By Theorem 4.8 the setting in the beginning of Section 3 establishes a
quasi Gelfand triple, if one assertion of Proposition 3.8 is satisfied.

From now on we will assume that (X, Xp, X_) is a quasi Gelfand triple and we
will identify dom ¢ with ran ¢ and denote it by D, as in Figure 3. Analogously,
we identify dom¢_ with ran._ and denote it with D_.

These identifications are really meaningful as we can endow D (as a subset of
Xo) with || f|lx, = |ltZ" flla, for f € D;. Then the completion of Dy w.r.t. to this
norm is clearly isomorphic to Xy. The same goes for D_.
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The set D_ =ran¢_ (previous identification) coincides with the set D_ defined
in Definition 3.2 for Dy := D,.

Proposition 4.10. The space Dy N D_ is complete with respect to

Fllaenxs = /115, + 1% and |Ifllx < [Ifllxnx. Vf€DynD-_.

Proof. For f € Dy N D_ we have
1£1%, = I, Pl = IF Hlaza | < Il Il < 113, nx -

Hence, every Cauchy sequence in D N D_ with respect to ||-||x,nx_ is also a
Cauchy sequence with respect to ||-||x,, ||-||x, and [|-]|x_.

Let (fn)nen be a Cauchy sequence in Dy N D_ with respect to ||-[|x, nx_. By
the closedness of ¢4 the limit with respect to ||-||x, and the limit with respect to
|||, coincide. The same argument for ¢_ yields that the limit with respect to
Il 2, and the limit with respect ||-||x_ also coincide. Therefore, all these limits have
to coincide and (fy)nen converges to that limit in D, N D_ w.rt. ||-|x nx_. O

Lemma 4.11. The operator
Dy xD_CX xX_. —= A,

o 0 1 - 7

is closed.

Proof. Let (([gﬂ,zn))neN be a sequence in [1,+ L_] that converges to ([Jg‘],z) in
XL X X_ X Ay, i.e.,

lim fo = f  (wrt |-lx,),

n—oo

lim g, =g (wrt |-x),
n—oo

and  lim f,+g, = lim 2z, =2 (wrt. ||x).
n—o00 n—00

Then we have
2%, = lim [fa + gal%, = Hm (17al% + l9al%, + 2Re(fu. ga)x,).

Since 2Re(fn, gn)x, converges to 2Re(f,g)x, x_, we conclude that | fy|x, and
[gnlx, are bounded. Hence, there exists a subsequence of (f;)nen that converges
weakly (in Xp) to an f € Xy. Moreover, by Lemma B.2 we can pass on to a
further subsequence (f,(x))ren such that (5 S, fn(k))j oy converges to f strongly
(w.r.t. ||"|la,)- The sequence (% Zi:l f”(k))jeN has still the limit f in X} (w.r.t.
|||+, ) and because ¢ is closed we conclude that f = f € D,. By linearity of the
limit we also have %Zi:l Gn(k)y — 2 — [ in A for the same subsequence. Since
% Z{c:l gn(k) is a Cauchy sequence in both X_ and Ap, the closedness of +_ gives
that g = 2z — f € D_. Hence, z = [L+ L,} [5] and the operator [L+ L,} is
closed.

Proposition 4.12. Dy N D_ is dense in Xy with respect to ||-|| x, -

Proof. By dom:i =raniy = D+ (Lemma 4.4) and mul [t;  ¢_] = {0} we have

on(mul[u_ L_])L:dom[u_ L_]*:domLiﬂdomLi:D,ﬂDJr. a
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5. QUASI GELFAND TRIPLES WITH HILBERT SPACES

In this section we will regard a quasi Gelfand triple (X, Xp, X_), where X, and
X_ (and of course Xj) are Hilbert spaces. Maybe also some of these results can
be proven for general quasi Gelfand triple, but we would need a replacement for
Theorem B.4.

For a quasi Gelfand triple (X, Xp, X_) consisting of Hilbert spaces, there exists
a unitary mapping ¥ from X_ to X, (Riesz representation theorem) satisfying

<g7f>X7,X+ = <\Pg7f>X+ and <f7 9>X+,X7 = <\I/71fa Q>X,-

We will refer to this mapping ¥ as the duality map of the quasi Gelfand triple.

Note that we previously regarded the adjoint of ¢4 with respect to the dual pairs
(X, Xp) and (X4, X_). The main reason for this choice was, that if X is not a
Hilbert space, then the dual pair (X, X,) is not available, but also sometimes the
adjoint with respect to the dual pair (X5, X_) is more natural.

However, now that X is a Hilbert space, the dual pairs (X, X} ) and (X_, X_)
are available and seem reasonable when it comes to calculating adjoints. Hence, if
we have an additional dual pair (Y, Z) and a linear operator A from X, to Y, then
we have two choices for the adjoint:

A*2*% s domA* C Z — Xy and A"#*¥: domA* C Z — X_,

as defined in Definition 2.2. In order to have a short notation we will denote the
adjoints that are taken w.r.t. the dual pairs (X4, X}) and (X_, X_) by A*» (h for
Hilbert space duality) and the adjoints w.r.t. (X, X_) still by A* i.e.,

A domA™ CZ - X, and A*: domA*CZ — X_.

Clearly, the same goes for mappings, where Xy is the codomain and analogously for
X_. Note that for Xy we regard only the dual pair (Xp, Xp), therefore we always
take adjoints with respect to this dual pair. In particular for 4 we have

s domut C Xy — Xy and o domif C Ay — AL
By Lemma B.3 we have the following relations between the adjoints:

*h __ * *h __ —1 =
=W and P =070

Corollary 5.1. The set DL N D_ is dense in X; and X_ with respect to their
corresponding norms. More precisely dom 1} 1, = L_T_l(DJ’_ ND_) is dense in Xy and
dom*t_ =" (Dy N D_) is dense in X_.

Furthermore, 17" (D1 N D_) is a core of .y and =" (Dy N D_) is a core of 1_.

Proof. Applying Theorem B.4 to ¢y yields /7"ty is self-adjoint. Note that by
Lemma B.3 we have (}* = W/}, where ¥ is the duality map introduced in the
beginning of this section. Hence, dom:}"t; = dom:% ¢4 is dense in Xy. By
Lemma 4.4 dom ¢} = D_, consequently

dom¢* ¢y =7 (dom e’ Nraney) = (D_ND;y)=DyND_. (4)
Finally, Proposition B.6 and (4) gives that (7' (D4 N D_) is a core of ¢.
An analogous argument for ¢_ yields Dy N D_ is dense in X_. a

Corollary 5.2. D, +D_ = AXj.

*h

Proof. Applying Theorem B.4 to ¢4 gives that (Lx, + ¢4}
every x € X there exists a g, € dom¢y¢3* C D_ such that

) is onto. Hence, for

*]
T= go +Lyt"gs.
~ =
eD_ €Dy

Since g, € dom 4", we have 1" g, € Dy and consequently z € Dy + D_. Q
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Next we will show that we can embed an entire quasi Gelfand triple structure
preservingly into a larger space. We will even give the smallest possible space that
contains the entire quasi Gelfand triple. However, before we start we give a proper
definition of what we mean.

Definition 5.3. Let H be a Hausdorff topological vector space. We say the quasi
Gelfand triple (X, Xp, X_) can be structure preservingly embedded into H, if there
exist linear, injective and continuous mappings

Gxy Xy = H, dxy: Xo—H and oy : X —H
such that
bx,

Basically the previous definition means that the following diagram commutes.

H
. Tm‘x
Xo

X_

Lt
domey = rancy rant_ = dom ¢
—1

|d0mL+ =0xt+ and ox |domL, = Pxpl— (5)

X,

n L

Since we identify dom ¢, and ran:y with each other and denote it as D, and the
same for ¢_, we can reduce the previous diagram to the following diagram.

H
X X, X_

+
ic:\ id i(’i\ /id
D, D_

From this point of view the compatibility condition (5) can be seen as

bx, f=0¢xf VfeDy and ¢x g=odxg Vg€ D_.

Note if (X, Xy, X_) is an “ordinary” Gelfand triple (where ¢4 is continuous),
then it is usually denoted by X, C Xy € X_. To be precise these inclusions are
actually identifications via the mappings ¢4 and ¢~'. The continuity and closedness
of 1y implies dom ¢y = & and that /7 is also continuous and everywhere defined.
Since 1} = 1~! (Lemma 4.7), we have the following setting:

-1
L L_
X —— Xy —— A,

which suggests that A_ contains the entire Gelfand triple. Defining ¢x, = vl
dx, = (=t and ¢ = idx_ justifies that X_ contains the Gelfand triple in a
structure preserving manner as defined in Definition 5.3.

For quasi Gelfand triples the construction of a space that covers the entire quasi
Gelfand triple needs a bit more attention.

By Proposition 4.10, Dy N.D_ with ||-||x, nx_ is complete and therefore a Banach
space. Since X1 and AX_ are Hilbert spaces (in this section) we can define the inner
product

<g7 f>X+ﬁX7 = <ga f>X+ + <g’ f>/'\,’7
on D ND_. This inner product induces the previous norm ||-||x, nx_. Consequently
D, ND_ is a Hilbert space with (-, '>X+m(, . For shorter notation we denote Dy ND_
by Z., the corresponding inner product and norm by (-,-)z, and ||-||z, , respectively.
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Corollary 5.4. Let Z, = Dy N D_ be the space defined in the previous paragraph.
Then the triple (24, Xo, 2!) forms an “ordinary” Gelfand triple. In particular 2!
1s isometrically isomorphic to Z_, the completion of Xy w.r.t.

h,z
bz = sup Lozl
2€2,\{0} HZ||Z+

Proof. By Proposition 4.12 we know that Z, is dense in Xj and by Proposition 4.10
that the mapping 1z, : Z — &p, z = z is continuous. Hence, “ordinary” Gelfand
triple theory or Theorem 4.8 gives the assertion. [

Theorem 5.5. We can structure preservingly embed the quasi Gelfand triple
(Xy, Xo, X_) into the space Z!, by the embeddings

Va, f={f " v, Yah=(h)x, and Yx g={g,t7 Yx x,.

Note that by our identifications of D} and D_ we have Ljrlz =zand 1"z =2
for z € Z,. However, making this change of spaces visible can sometimes help.
Nevertheless, most of the time this is only additional dead weight, this is why we
will often just write ¢x, (f)(2) = (f, 2)x, x_, etc..

Clearly, since Z’, and Z_ are isometrically isomorphic we can also structure
preservingly embed (X, Xy, X_) into Z_. For notational harmony we prefer to use
Z_ instead of Z' . However, for our purpose there is no need to strictly distinguish
between them, this is why we will use these symbols as synonyms. Figure 4 illustrates
the meaning of the previous theorem.

Proof. First we have to check that these mappings are well-defined: Let z € Z,
feX, he Xyand g € X_. Then

[, (N2 = I 2 x| < I fllxpllzlxs < W fllag Mzl 2,

[V, (R)(2)] = [(h 2, | < Bl [l 2]l < (12l o 2]l 2

[Wa_(9)(2)] = (g 2)a_ x| < Mlglla_llzllay < Nlgllx_ |2l 2,

which implies 9., (f), ¥, (h) and Yx_(g) are in Z',, and 9 x, , Yx, and 1x_ are
continuous. The linearity of 1x,, 1x, and ¢ x_ follows from the sesquilinearity
of a dual pairing. If ¢x, (f) = 0, then f L 2y =YDy N Do) = domi* .
Since dom ¢* ¢_ is dense in A_, we conclude f = 0, which proves ¢, is injective.
Analogously, we can show that tx_ is injective. If ¢y, (h) = 0, then h L Zj.
Since Z4 is dense in Aj, h has to be 0, which gives the injectivity of ¢ y,. The
compatibility condition (5) follows from

¢Xo © L+(f)(Z) = <L+f7 Z>Xo = <fu L1Z>X+,X7 = <f7 5:12>X+,X, = ¢X+ (f)(Z),
VY, 0t (9)(2) = (1—g, ), = (9.0 2)x_ . = (9,05 2) 22, =¥x (9)(2). Q
Now since we can always structure preservingly embed a quasi Gelfand triple into
Z_ (Z2!) we can regard this quasi Gelfand triple as subsets of Z_, see Figure 4a,
and do not have to deal with all this embeddings (most of the time). However, we

will not get completely rid of these embeddings, as they are sometimes helpful, but
we can always regard them as identity mappings.

Lemma 5.6. Z_ =&, + X_ and
_ : 2 2
bz = ot /IS, gl
feX ,geXx_

Proof. Note that Z is a Hilbert space with (21, 20)z, = (21, 22)x, + (21, 22)x_-
Hence, there is a duality map ® from Z_ to Z, and we can write

<h, Z>3773Jr = <®h,2>g+ = <<I)h,Z>XJr + <(I)h, Z>X7.
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NN/

z,

(A) Venn diagram (B) Commutative diagram

FIGURE 4. quasi Gelfand triple embedded in Z_

Furthermore, with the duality map ¥ from X_ to Ay we have
<h’ Z>377Z+ = <\I'_1<I)hv Z>X7,X+ + <‘I’¢)h’ Z>X+,Xf

and h = U~1®h + U®h in Z_, where U~1®h € X_ and V®h € X,.
Let h € Z_. Then for every f € X,, g € X_ that satisfy h = f + g in Z_ we
have

W%Z)z,,zﬂ = \(f’ Z>X+7X, + <9,Z>X,,X+| < |<f7 Z>X+,XJ + |<972>X,7X+|
< a2l + lgllx Nz 2,

< VIFIE, +llglE_ /1213 + 11213,
= JIF1%, + gl 12ll=. .
which implies |[h[|z_ < infazyig (/I f]1%, +[l9l[3 - On the other hand

[hlZ_ = |@hlZ, = |®hl%, + [|@hl%_ = YT @[5 + LA,
finishes the proof. a

The next result reinforces Definition 4.3.

Proposition 5.7. The intersection Xy N Xy in Z_ equals Dy, i.e., ranty, N
ranty, = ran(¢x, o t4), and the intersection X_ N Xy in Z_ equals D_, i.e.,
ranty_ Nrantyy, = ran(ax, o t_).

Proof. Let he XL N Xy C Z_, i.e., it exists an f € Xy and a k € A such that
(h,2)z_ .z, = ([, L:12>X+’X_ =(k,z)x, forall zeZ,=D;ND_.
We define z = 1~'z, which leads to
(f,x)x, v = (k,i_x)x, forall ze.'(DinD_).

Since t~' (D N D_) is a core of ¢ (Corollary 5.1), this equation is also true for all
x € dom¢_. Moreover, this implies f = ¢* k and k € dom:* = Dy. By * = L_T_l
we obtain ¢y f =k € Dy and

<h7Z>Z,,Z+ = <f7 L:IZ>X+7X7 = <kaz>Xo = <L+fa Z>X07
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which givesh=f=k=1yfin Z_and h € Dy.
The same steps can also be done for X_. a

Theorem 5.8. The intersection X1 NX_ in Z_ is Dy N D_(= Z,), i.e.,

ranty, Nranty_ = ran(Px, o t4) Nran(y, o 1) = P, (Z4).

This means that area of Xy N X_ in Figure 4 outside of &} is actually empty.

Proof. Let he Xy NX_ C Z_, i.e., it exists an f € X} and a g € X_ such that
(h,2)z_ z. = (f, L:IZ>X+’X7 = <g,Ljrlz>XﬂX+ forall ze D, ND_.

We define x = sz, which leads to z = ¢;x. Since z € dom =1, we have z €
dom:~'t;. Recall that ="' = ¢ and «;'Z; = 7" (D4 N D_) = domu% iy (see
Lemma 4.7 and Corollary 5.1). Hence,

(f,ierxyx, v = (g, ) x, forall xedomuiiey,

which implies (¢3.¢t4)* f = g and f € dom(¢} 14)*. By Proposition B.6 (¢ 04)* = 714
and therefore f € dom % ¢y and in particular, ¢y f € (4 (domeiey) = Dy N D_.
Note that again by (=' = ¢ we have =M f=g. Thus, g € dom:_ and 14 f = 1_g.
This gives

<h7Z>Z_,Z+ = <L+fa Z>Xo - <L*ga Z>Xo-

Therefore, h=f=g=1,f=1_gin Z_. a

Corollary 5.9. For f € X, and g € X_ we have

I +oll=- = inf \JIF+21%, +llg—=I% -

Proof. By Lemma 5.6 we have

If+gllz= _ inf /IfI%, +Il3l%
f+g=f+

g
feX,,gex_

Note that f + g = f + g implies

z=f—[=—(g—§ X, nx_.
€X+ ceXxX_

We can write f = f—zand g = f+ z and by Theorem 5.8 we have z € Z,.
Consequently,

—_ 3 _ |2 2 _ 3 2 _ |2
1+l = inf \JIf = #l%, +lo+ 213 = inf I+, +llo—=l% . Q

The space Z_ is the smallest space where we can embed the quasi Gelfand triple
structure preservingly. The following theorem makes this statement precise.

Theorem 5.10. Let H be a Hausdorff topological vector space such that we can
structure preservingly embed the quasi Gelfand triple (X1, Xy, X_) into H and let
dx,, dx, and ¢x_ denote the embeddings. Then also Z_ can be continuously
embedded into H by a mapping ¢z_, such that

¢z ovYx, =dx,, ¢z oYx,=¢x and ¢z oYx =¢x_,
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i.e., the following diagram commutes.

H

Z_

X /XO\X
NN
AN V4

Zy

Proof. Recall that we can assume that X, Xy, X_ C Z_ and ¢x, f = f, Ya,h = h,
and Yx_g = g, by simply replacing the quasi Gelfand triple (X, Xp, X_) by
(¢X+ (X-i‘)’ w/\’o (Xo), 'Qb/'lC (X—))7 see Figure 4.

For convenience we define X, = dx, (Xy), Xy = b, (Xo) and X_ = dpr_ (X_)

with [[fll, = 163, fllay, Al 2, = 0%, hllx, and llgll . = llox gllx_.
We will show as a first step that we can endow X} + A_ in H with ||h||)3++)27 =

inf i gp /Hf||f{,+ + |lgll%  such that the corresponding topology of |||, , 5 is

finer than the topology 73 of H (i.e., whenever (hy,,),en converges w.r.t. ||-||/.9++A5,7,
it also converges w.r.t. T3). Note that we can alternatively write the norm as

1 + gl e =i { JIFIZ, +1a1% | F+5=1+9)
:inf{\/||f+22 zeX+ﬂX_}.

e
-2l
Moreover, the mapping

Xy

A { X+XX_ — H,
' (1] — ox.f+dx_g,

is continuous as composition of the continuous embeddings into H and the con-
tinuous addition in H. Hence, ker A is closed in X x X_ and the quotient space
Xy x X /ker A is a Hilbert space and is isometrically isomorphic to Xy + X_ with
||~H)3++/,97. The quotient mapping A/ ker A : X+ X X=/}er A — H is injective and

continuous, which implies that topology of -[| ¢, is finer than the trace topology

of Tz on Xy + X_.
We can regard Z, = ¢x,(Z24) C Xy C H and endow this space with

+X

lellz, = /leT%, +1el% = loxizlz, for =€ 2.

h,2)| 5

Furthermore, we can define a new norm on &y by ||h| s = SUD, ¢ 2\ {0} %
_ 2,

Note that every h € Xy can be written as h = f + g, where f € Dy and g € D_,

see Corollary 5.2. Hence, also every h € &) can be written as h = f + g, where

f € bxy(Dy) = dx, (Dy) C X N&p and g € g, (D) = ¢ (D) C XyNX_. We
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know by Corollary 5.9 for every f +g € Xy (f € ¢, (D), g € da,(D_)) that

If +4llz = llén (F +9)llz- = inf \/II¢}§(f) +2l%, + o (9) — =I5

~ inf wm )+ 02 ), + 193 (9) — 62 ()13
| —

z2EZ +
_¢x+( +2) :tb;{i (9—=2)
= int IF I, T
ZE +
. _ e — o
> _inf I+ 2% +lg =215 =1f+9lz, 4 -

because Z; C X, N X_. Hence, the completion of Xy w.r.t. |-||; can also be

continuously embedded into /'%Jr + X_, because 2\?+ +X_is complete, and therefore

also into H. In particular the mapping (1, does not do anything by assumption)
¢Xo 01?;601: ¢X0(XO) CZ —-H

is continuous w.r.t. the ||-||z_ topology on ¥x,(Xy) and Ty, on H and injective. By
the density of Ay in Z_ we can continuously extend this mapping, denoted by

pz_ = dx, © 1/);(()1: Z_ = H.
By construction we already have ¢z oy, = dx,. Note that for z € Z; we have
2=vYx,z2=Vx2=%x_z and o¢x,z=dx,z=dx_z.

Now for f € X, there exists a sequence (2, )nen in 24 that converges to f w.r.t.
||'HX+- Hence, the continuity of ¢z_, Yx, and ¢, gives

¢z_oYx, f= lim ¢z ovx, 2z, = lim ¢z ovYx,z,
n—r00 n—00

= nlgn Dxy2n = hm ¢>X+ 2y = ¢x, [

Analogously, we can show ¢z o9y = dx_. a

Corollary 5.11. Let ‘H be a topological Hausdorff vector space such that we can
structure preservingly embed the quasi Gelfand triple (X4, Xo, X_) into H. Then
Xy NAX_ inH equals Dy N D_, i.e., px (Xy) Ny (X_) = dx, (D ND_).

Proof. By Theorem 5.10 we can also embed Z_ into H such that

ae

X CZ_CH.

Hence, Xy N X_ in H is the same as X} N AX_ in Z_, which equals, by Theorem 5.8,
.D+ N D, == Z+. D

6. GRAM OPERATORS

Every quasi Gelfand triple (X, Xy, X_) is fully determined (up to isomorphic
identifications) by Xy, ranty and ||-|[x, on ranty (or ran._ with ||-[[x_). However,
in the Hilbert space case (X5 is a Hilbert space) we can even encode the entire
information of a quasi Gelfand triple in a single (so called Gram) operator G on
Xo, that is self-adjoint, positive and injective. This means that (Gf, g)x, defines
a new inner product on Xy, which gives rise to (f, g)x, . In particular, we will see
that D, = dom G"/2 and (G2 f,G'?g) = (f,9)x,
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Definition 6.1. Let (X, Xy, X_) be a quasi Gelfand triple of Hilbert spaces. Then
we define the Gram operator G4 : dom G4 C Xy — Ay of the quasi Gelfand triple
b
’ Gyo= ()™t = ()™
where here the adjoint is taken w.r.t. the dual pairs (Xp, Xp) and (X}, X ), i.e.,
(1) = ()™ e and 2 = 70
By Theorem B.4 G is self-adjoint and positive (not necessarily strictly positive
(coercive)). Moreover, by the functional calculus for unbounded self-adjoint operators
on Hilbert spaces there exists a root Gf of G4, which is also self-adjoint and positive.
Clearly, we can do the same for ._ and define G_ = (:=!)*»,~!, where again
here the adjoint is taken w.r.t. the dual pairs (Xo, Xp) and (X_, X_), i.e., (121)* =
(LZh)*x-x%_ In fact we will see that G_ = G .

Theorem 6.2. Let (X1, Xy, X_) be a quasi Gelfand triple of Hilbert spaces and G
. 1/2
its Gram operator. Then rant; = dom G{" and

(f,9)x, = <G1/2f, Gfg}xo forall f,g€ domGzQ.
In particular, || f|lx, = ||G:{2f||XO.

Proof. Note that dom G4 = dom(¢;")*».;" is a core of «;'. This implies that for
every [ € rant there exists a sequence (f,)nen in dom G4 such that f, — f w.r.t.
[/l and ¢3! fr = 5" f wert. |||, . In order words dom G is dense in D w.r.t.

Na.na,- For f,g € domG, C dom G'/* we have
|| H + 0 + +
(g ay = (035 o 9) s, = (Gifi)a = (GLF.GLg)x  (6)

and in particular we have [|03' f|x, = ||G12f||2(0 for all f € domG,.
For every f € ranty there exists a sequence (fy,)nen in dom G that converges
to f w.r.t. |||, nx,- Hence, we have

1 _ —_
G falleo = 165 full e, = 11652 Fllx,

and in particular (G1+/2 frn)nen is a bounded sequence in Xy. Therefore, there exists
a weakly convergent subsequence and by taking a convex combination Lemma B.2
we end up with a sequence (fy,)nen that still converges to f w.r.t. ||-||x, nx, and
additionally (fon)neN converges to some f € Xy. By the closedness of G:{Q the
limit f has to coincide with f. This implies ran ¢, C dom G and we can extend (6)
by continuity to

<L;1f, L_Ilg)/n = <Gzzf, Gii{2g>/,,(0 for all f,g€ranc,.

Note that dom G = dorn(Gzt‘))”‘Gz2 is a core of GZQ. Now we will the repeat
the previous step with switched roles of GZQ and L_T_ll For every f € dom Gzz there

exists a sequence (f,)nen in dom G such that f, — f and Gzzfn — Glff both
w.r.t. ||-[|x,. This gives

— 1 1
16 falley = G Fullao — IIG fll 20

Now (¢3! fa)nen is a bounded sequence in X . Therefore there exists a weakly
convergent subsequence. Moreover a convex combination of this subsequence con-
verges even w.r.t [|-||x,. In total we have a sequence (fn)nen such that f, — f,

fon — Gzzf w.r.t. |||, and L_T_lfn — f wr.t. |-|lx,. for an f e X.. By the
closedness of 1y we conclude f = Lf f and in turn dom Gf C ranty, which
completes the proof. Q
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Proposition 6.3. Let (X}, Xy, X_) be a quasi Gelfand triple of Hilbert spaces.
Then
G_=Gi"

Proof. Let W: X_ — X, denote the duality mapping between X_ and X,. Recall
G = (L:I)*},L:I _ (L,Lth)_l,
Uh=00 =0 and =000 =0
Hence, we have
Gll=1 = v = (W) = ) = )™t =Gy
Corollary 6.4. Let (X, Xy, X_) be a quasi Gelfand triple of Hilbert spaces. Then
rant_ = dom Gl_/2 = dom G_T_l/2 =ran G:{?.

So far we have shown that there is a self-adjoint positive and injective operator
with dense range for every quasi Gelfand triple. Now the next theorem will show that
also the reverse is true. That is, every self-adjoint positive and injective operator G
with dense range establishes a quasi Gelfand triple whose Gram operator is G.

Theorem 6.5. Let Xy be a Hilbert space and G a self-adjoint positive and injective
operator on Xy with dense range. Then there exists a quasi Gelfand triple whose
Gram operator is G. In particular, if we denote the corresponding quasi Gelfand
triple by (X4, Xo, X_) we have

rant, = domG7* and ran._ =ran G2
Moreover, G coincides with the Gram operator G4 of (X4, X X_), i.e., G=G.

Note that dense range and injectivity are equivalent for a self-adjoint operator.
Moreover, the density of the range (or the injectivity of the operator) is not really a
necessity as we can always split

Xo =kerG drand.

Hence, we just replace Xy with ran G and G with G |W

Proof. We define (f, g)x, == (G'/*f,G"/?g) x, and the corresponding norm || || x, =
G2 f||x, for f,g € domGY?. Since G'* is positive (-,-)x, is really an inner
product and ||-[|x, a norm. Hence, dom G'/? with (-,-) x, is a pre-Hilbert space and
its completion X, is a Hilbert space. We define

L domG7? C X, — X,
i fo= I
Let (H:DHGN be a sequence in ¢y that converges to [?] € Xy x Xy. Then

([ Glj/c;" P D N is a Cauchy sequence in & x Ay, and therefore convergent. The
n ne

closedness of G'/2 implies f € dom G'/? = D, and [Gf;;‘f } — {Glj/czf] This leads

to |[fn — flla, = IG?(fn — f)|lx, — 0 and consequently f = g. Now we can apply
Theorem 4.8 and see that there is a space X_ such that (X, Xp, X_) forms a quasi
Gelfand triple.

Now we have for f,g € dom G"/?> = rant, = dom Gzz
(G £.GVg) = (fr 9w, = (G £.GLg)
Note that dom G C dom G"/> and therefore for f € dom G we have
<Gf7 g>Xo = <Gzzfa G:{2g>?{o7
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which implies Gzzf € dom GZQ and Gszzf = Gf. Hence G C G;. The same
argument with G and G4 switched gives G4 C G and thus G = G.
By Proposition 6.3 we have G_ = Gjrl = G~ ! and therefore, by Theorem 6.2 for
G_7
rant_ = dom G/* = ran G_/* = ran G'/2. a

There is a bijection between the set of quasi Gelfand triples with pivot space
Xy and all self-adjoint positive and injective operators with dense range on X}, see
Figure 5.

(o)™t

(X, Xo, X-) G
\ dom G2
Theorem 4.8 XJr, Ly < D+, <'7 '>X+ '

completion <G1/2.$G1/2.>X0
FIGURE 5. Illustration of Theorem 6.5

Since all infinite dimensional separable Hilbert spaces are isomorphic, it is clear
that there exists a dual pairing (-, ) x, x, such that also (X, Ap) is a complete dual
pair. However, we can explicitly write this mapping by

(hove.m = (GFetg) =(1.GFe g

x,

where GZQLJ,_ is the continuous extension of the isometric mapping Gfu_ : domey C
X+ — Xo.

6.1. Decomposition into two “ordinary” Gelfand triples. In this section we
will see that every quasi Gelfand triple of Hilbert spaces can be decomposed into
two “ordinary” Gelfand triple. This means for a quasi Gelfand triple (X, Xp, X_)
there exist “ordinary” Gelfand triples X1 C X3 C X! and X? C A C X? such
that

Xp=X{0X?, X=X 0X; and X_=2x'oa7
Theorem 6.6. Let (X, Xy, X_) be a quasi Gelfand triple of Hilbert spaces. Then
there exist two “ordinary” Gelfand triple X}r - XOI c X! and XJQF C on C X2 such
that

Xy =XloX:, Xo=X@X] and X_=X'o X

This means that every quasi Gelfand triple (of Hilbert spaces) is the result of

two “ordinary” Gelfand triple that are cross-wise composed.

Proof. We will show the proof in several steps:

1. Step: Decomposition of Xy. Let G be the Gram operator of the quasi Gelfand
triple and Glf its positive square root. Then there exists a spectral measure E for
GZZ such that Gzz = fR+ AdE(X). We can decompose Xp into

Xo =ran E((1,00)) @ ran E((0,1]) .

::X& ::XO2
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By spectral theory A& = ran E((0,1]) € dom Gzz =ranty = D4, as (0,1] is a
bounded set. We can write every f € D, as
f=E((1,00))f+E0,1])f

and since E((0,1])f € D,, we conclude that also E((1,00))f € Dy. For an
arbitrary f € X3 C Xp there exists a sequence (f,)nen in Dy such that f, — f
w.r.t. ||| a,. Since also (E((1,00)) frn)nen converges to E((1,00))f = f by continuity,
and E((1,00))f € Dy, we conclude that X3 N D is dense in X} (w.r.t. ||-||x,). On
the other hand, X} C D,.

2. Step: Decomposition of X,. For f € D, we have
1
1B, ) fII%, = IGL B0, 1)fI%,
— [ WPdE < [ pPaEy, =R,
(0,1] (0,00)
and

IE((L, 00) fII%, = IGLE((1,00))f 113,

=/ IA*dEf; S/
(1,00) (0

Hence, the spectral projections E((0,1]) and E((1,000)) are also continuous on D
with respect to ||-||x, and we can extend these projections continuously on A7 .
Note that for f € D, we have G7*E(A)f = E(A)G"* for all A in the Borel sets of
R. Hence, we have for f,g € D,

AP dEs s = |1 fII%, -
00)

)

(B((0,1])f, E((1,00))g) e, = (GLE((0,1))f, G B((1,00))g) x,
= <G+E((1v OO))E((Oa 1])fa 9>Xo =0,
=0

which implies that the extensions of E((0, 1])|D+ and E((1, oo))’D+ are orthogonal

projections on X;. Moreover, for f € X, there exists a sequence (fy,)nen in D
that converges to f w.r.t. ||-||x,. By the continuity of projections we conclude that
(E((0,1]) fn)nen and (E((1,00)) fn)nen converges and therefore

= lim E((0, 1])fn+n1gI;OE((lvoo))fn

n— oo

This leads to: the extensions of these projections are also complementary. We
denote these extensions by E((0,1])+ and E((1,00))+ and we have

Xy =ran E((1,00))4 @ ran E((0,1])+ .

—. y! —. 2
=X, =7

3. Step: Relationship between the decompositions of Xy and X4. Note that E((1,00))4+ Dy =
E((1,00))Dy = X} N D, Furthermore, for f € X¢ N D, we have

||f|\%c+ = ||E((1,OO))fH/2Y+ = ||G12E((1a00))f||%co
= A2dE; > inf M2|F1% > 2.
/(1} )| | f.fZ /\61(17 )| | ||f||)(0 = ”fHXO (7)

Now for f € X} there exisits a sequence (fn)nen in Dy that converges to f w.r.t.
|-lx, and therefore also (fn)nen = (E((1,00))+fn)nen converges to f w.r.t. |||/, .
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By (7) we have
1o = Fonll 2ty < Wi = Fmlle, =0,

which implies that (f,)nen is a Cauchy sequence in X3 (w.r.t. ||-|,). By the
closedness of ¢y the limit of this sequence (w.r.t. ||-||x,) has to coincide with f.
Hence, X! = X} N D and the restricted embedding L+’ ar X1 — X is continuous.

On the other hand, since X7 C D, we automatically have X2 C X2, by con-
struction. Furthermore, for f € X? we have

141, = I )51, =167 E© ),
= [ WPaE < s PR, < 11 )
(0,1] A€(0,1]

This implies that the inverse embedding Ljrl restricted to A2 is continuous, i.e.,
17 ot A — X2 is continuous. Hence, we have
0

Ay Cx? and X} CAY
densely with continuous embeddings
4. Step: Decomposition of X_. Note that for g € D_ we have
1 —1
lolla- = 1G4l = 1G7 gl
and additionally by the rules for the spectral calculus we have
_ 1
G =G =/ “dE.
(0,00) A

Hence, the exact same construction as in the second step (replace Xy by X_, D
by D_, G4 by G_ and || by |§|) gives the decomposition

X_ =ran E((1,00))- @ran E((0,1])_ .

.yl .2
=t =x2

5. Step: Relation ship between the decompositions of Xy and X_. Again repeating
the arguments of the third step. In particular, for ¢ € D_ we have

B0, 1Dgll3. = 167 E((0,1))gl%

= —| dE > inf |[= 2 2
/(0,1] 99 = 0] X gl = llgll%,
and
1
IE((Loo))gl% = G B(1,00))g]%,
7/ EQdE < inf *2H Hz = ”2
- (1,00) A 99 T Ae(1,00)| A Illx, = 91, -

This implies ¢_ ' X2 — XZ and Lzl}m} : X¢ — X! are continuous. In particular,
we have
X7 CX; and Xy C X!

densely with continuous embeddings.
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6. Step: Dualities. By Hahn-Banach we can identify (X2) with X} Moreover,

[z
for f € X, and g € X_ there exist sequences (fn)nen in Dy and (gn)nen in D_
such that f, — f w.r.t. [|-||x, and g, — g w.r.t. ||-||x_. Hence,

(B0, 1)+ f, B((1,00)) ), 2 = Tim (B((0,1])+ S, B(1,50)_gn)e, v
= lim (B((0, 1)) fu, B((1,00))gn) i, = 0.

Clearly, we also have (E((1,00))+f, E((0,1])—g)x, x. = 0. For ¢ € (X?)’ there
exists a g € X_ such that

o(f) = (9, la_ 2, = (E(0,1])_g, fla_ x, + (B((1,00))_g, flax_x, VfeXZ
20

Moreover,
E(0,1]) g, f)x_,
loley = sup UL gy [EO D9 N)x. x|
sex\op Il sexzypo) 1T,
E((0,1])-g, f)x_,
—  sup [(E((0,1]) )x X+|:HE((071])79HX7
fex;\{o} I f1l 2,

On the other hand, if (E((0,1])—g, f)x_,x, = 0forall f € X2, then we automatically

have (E((0,1])—g, f)a_,x, = 0 for all f € X, and therefore E((0,1])—g = 0. In

conclusion (X2, X?) is a complete dual pair and (X2, X}, X?) is a quasi Gelfand

triple with the embeddings L+| 22 and ¢ | x>+ Moreover, since ¢ | 2 1s continuous,
= s T

it is even an “ordinary” Gelfand triple (X? C AF C X2).

We can show completely analogously that also (X}F,Xol,X}) is an “ordinary”
Gelfand triple (X} C X} C A1), Q

Note that this decomposition is not unique as we could have split the space X by
any two subspaces ran E(A) and ran E(AC), where (0,¢) C A C R, is a bounded
non-empty Borel set for any € > 0.

Finally, we end with two conjectures

Conjecture 6.7 (weak). Every pre-quasi Gelfand triple of Hilbert spaces is a quasi
Gelfand triple.

Conjecture 6.8 (strong). Every pre-quasi Gelfand triple is a quasi Gelfand triple.

At least the weak conjecture seems to be true, but all attempts failed so far.
In fact Theorem 5.10 and Theorem 6.6 are the result of failed attempts to prove
the weak conjecture. The strong conjecture seems much more difficult, as a lot of
Hilbert space theory is unavailable.

A positive answer to (at least) the weak conjecture would automatically answer
the question whether the weak and strong definition of boundary trace operators
for differential operators coincide.

CONCLUSION

We have introduces a generalization of Gelfand triple that does not need con-
tinuous embeddings. This was done by replacing the continuity of the embeddings
by closedness. We showed that D, N D_, the set that is in the intersection of the
quasi Gelfand triple, is dense in the pivot space Xj.

If we regard quasi Gelfand triples of Hilbert spaces, then we can show that
D, N D_ is also dense in &} and X_ w.r.t. their norms. Furthermore, we have
shown that there exists a smallest space were we can embed the entire quasi Gelfand
triple structure preservingly.



26 NATHANAEL SKREPEK

Finally, we have shown that every quasi Gelfand triple is associated to a Gram
operator and the other way round. This led us to a decomposition of the quasi
Gelfand triple into two “ordinary” Gelfand triples.

We ended with the weak and strong version of the conjecture that every pre-quasi
Gelfand triple is in fact already a quasi Gelfand triple.

One application that we did not cover, that is still worth mentioning: Quasi
Gelfand triples can be used to properly define boundary spaces and characterizing
suitable boundary conditions for partial differential equations that lead to existence
and uniqueness of solutions, see [10].

APPENDIX A. COMPARISM TO SIMILAR CONCEPTS

In this section we want to introduce the notions triplets of spaces and triples of
closely embedded Hilbert spaces and compare them to quasi Gelfand triples. We will
show that all these notions coincide, i.e.,

(X4, Xp, X_) is a quasi Gelfand triple
& (Xy, Xy, X_) is a triplet of spaces
& (X, Xp, X_) is a triple of closely embedded Hilbert spaces.
In [6] they investigated the equivalence between triplets of spaces and triples of
closely embedded Hilbert spaces and gave conditions for their equivalence. Suprisingly,
they did not realize that no conditions are needed.
First we state the original definition of t¢riplets of spaces, which includes some

implicit assumptions on how to understand intersections of different Hilbert spaces
that are not embedded in a common space.

Definition A.1 (Triplets of spaces (original)). Let X, Xy, X~ be three Hilbert
spaces. We say (X, Xp, X_) is a triplet of spaces, if the following assertions hold.
(a) D:= X NAXyNX_ is dense in each of these spaces.

(b) The sesquilinear form B(g, f) = (g, f)x, admits the estimate

[B(g, I < llgllx_[Ifllx, forall g,feD.

We denote the continuous extension of B to X_ x X still by B.

(c) For every h € X, there exists a unique g, € AX_ such that (h, flx, =
B(gn, f)x, for all f e X,.

However, in order to avoid misinterpretation of the meaning of the intersections
in the previous definition, we introduce the following clarification.

Definition A.2 (Triplets of spaces (clarified)). Let X4, Xy, X_ be three Hilbert
spaces. We say (X, Xy, X_) is a triplet of spaces, if there exist mappings

ky: domky CX, - Ay and k_: domk_ CAX_ — &)

linear and injective such that the following assertions hold.
(tosl) Xy N AXyNX_ is dense in each of these spaces, i.e.,
D :=rank; Nrank_ is densein Ap,
ki'(D) = k' (ranky Nrank_) is dense in A},
k~'(D) = k:l(ran kyNrank_) isdensein X_.
(tos2) The sesquilinear form B(g, f) .= B(k_g, k4 f) admits the estimate
1B(g, )] < llglla_[lflx, forall gek™"(D).f e k{(D),

where we denote the continuous extension of B to X_ x X still by B.
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(tos3) For every h € X there exists a unique g € X_ such that (h, f)x, = B(g, f)
for all f e X,.

For one direction of the equivalence between quasi Gelfand triples and triplets of
spaces we are already prepared.

Lemma A.3. Let Xy, Xy, X_ be Hilbert spaces. If (X1, Xo, X_) is quasi Gelfand
triple, then (X4, Xo, X_) is a triplet of spaces.

Proof. Note that since every quasi Gelfand triple is structure preservingly embedded
in Z_ (Theorem 5.5), we can omit the embedding operators. However, if we would
like to be more precise we would just define ky = ¢4 and k_ = ¢_.

Theset D =X, NAyNA_ =D, ND_ is dense in Xy and A_ by Corollary 5.1
and dense in Xy by Proposition 4.12. Furthermore,

|B(g7f)| = |<gaf>Xo‘ = <gaf>X_,X+| § ||g||X_||fHX+ a

The reverse direction needs more attention. Especially, because the notion of
triplets of spaces leaves room for ambiguity. Hence, we first want to highlight want
we mean by this ambiguity.

Example A.4. Let w: (0,1) — (0,00) be a measurable and (essentially) un-

bounded function such that also 1 is (essentially) unbounded, e.g., w(z) = =% and

v: (0,1) = (0,1) be a measurable and (essentially) bounded function such that also
1

L is (essentially) bounded, e.g., v(z) = 4. Then we define weighted L? spaces

Xy =L%((0,1),wdA), Xy =L>*((0,1),vd\) and X_ =L*((0,1), 2 dA),

where A denotes the Lebesgue measure. It is straightforward to show that (X, X_)
is a (complete) dual pair with the dual pairing (g, f)x_ x, = f(o 1 gf dA. Note that

the intersection of all these spaces contains C2°((0,1)) which is dense in all of these
spaces. Moreover,

Blg.f) = (9. f)ay = / 1 guwTFodh < [[o]ocllglla || fllx.
(0,1) SN——

<1
Hence, (X1, Xy, X_) is a triplet of spaces. However, this is true for every v and
therefore the space X—or more precisely its inner product—is not uniquely deter-
mined. In order to obtain a quasi Gelfand triple we either have to choose a different
(but equivalent) inner product for Xy or for A_.

The previous example shows that in general we have to expect the necessity to
replace the inner product in X}, Xy or X_ by an equivalent inner product in order
to obtain a quasi Gelfand triple.

Although the previous example suggests to change the inner product in the almost
pivot space Aj, in our approach it is more convenient to change the inner product
in X_. In fact this just means that we use a different dual pairing for (X, X_),
namely the pairing that the pivot space &} induces.

Lemma A.5. Let (X4, Xy, X_) be a triplet of spaces and D = ranky Nrank_.
Then the continuous extension of

k_g,kyf
lole = sup [E=gkifix|
FerT (D0} £l

is an equivalent norm on X_. In particular ||g||5 equals the operator norm of
B(g,-) for allg e X_.
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Proof. By the definition of B and the density of k'(D) in X} we have for g €
k=H(D)

e = s BEAL_ oo 1B

ST i = 1B(g, )|l
fek N (D)\{0} ||f||X+ fexi\{o} ||fHX+

Consequently, X_ > g — ||B(g,-)| is indeed the continuous extension of k~*(D) >
g+ |lglls - Note that since B(g,-) is a bounded antilinear mapping there exists

tos2
an hy € Xy such that B(g,-) = (hg,-)x, . Hence, [|g|l5 = [lhglx, ( < ) llgllx_ and
the mapping g — hg is bounded. Since by item (tos3) this mapping is also bijective,
the open mapping theorem implies that is is boundedly invertible. Therefore,
llhglla, > cllgll 5 for some ¢ > 0, which leads to

cllgllx. < lhgllx, = llglle. = lhgllx, <ligllx_ Q

~

Lemma A.6. If (X, Xy, X_) is triplet of spaces, then (Xi, Xy, X_) is a quasi
Gelfand triple, where X_ = X_ equipped with the equivalent norm || 5 from
Lemma A.5.

Proof. For g € X_ and f € X4 we define
<gvf>)?_’)(‘+ = B(gvf)

By the definition of the norm of X_ and (tos3) this is a dual pairing for (X, X_)
and therefore (X, X_) is a dual pair. Note that |-l 5 is equivalent to ||-||x_ by
Lemma A.5.

We will apply Proposition 3.8 on the embedding 7, = ky to show that this
mapping is closable. Corresponding to 7y there is D_ (Definition 3.2), which is a
superset of D and therefore dense in Xy and X_. Hence, item (iv) of Proposition 3.8
is satisfied and consequently k. is closeable. Hence, we define 1, = k; and
v = (.3')*, where the adjoint is taken w.r.t. the dual pairs (X}, /i’\,) and (X, Xp).
Note that ¢_ is an extension of k_.! For f € dom:, and g € dom:_ we have

<gaf>fﬂ)(+ = <g’L~_}1L+f>)?ﬂX+ = <(L11)*97L+f>?€'0 = <L—gab+f>/\’0'

Finally, dom:} = ran:_ holds true by construction of :_, which implies that

~

(X4, Xp, X_) is a quasi Gelfand triple. a

Theorem A.7. Let X, Xy, X_ be Hilbert spaces. Then (X4, Xy, X_) is a triplet
of spaces, if and only if (X4, Xo, X_) is a quasi Gelfand triple (up to an equivalent
norm on X_)

Proof. This is the result of Lemmas A.3 and A.6. a

Definition A.8 (Triples of closely embedded Hilbert spaces). Let Xy, Xy, X— be

Hilbert spaces. Then we say (X, Xy, X_) forms a triple of closely embedded Hilbert

spaces, if the following conditions are satisfied.

(thl) There exists a linear operator ji: domj; C X, — Xp that is densely defined,
injective, closed and ran j; is dense in Aj.

(th2) There exists a linear operator j_: domj_ C Xy — X_ that is densely defined,
injective, closed and ranj_ is dense in X_.2

lWe did not just regard k_, because we do not know whether Conjecture 6.8 holds.
2Note that here j— maps in the reversed direction compared to ¢— in the definition of quasi
Gelfand triples.
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(th3) domji C domj_ and for every h € domj_ C X we have

‘<j+f7 h> Xo |
112
Proposition A.9. Let Xy, Xy, X_ be Hilbert spaces. Then (X1, Xy, X_) is a triple

of closely embedded Hilbert spaces, if and only if (Xy,Xo, X_) is a quasi Gelfand
triple.

l7=hllx. = sup{ f€domyy, f# 0}-

Proof. Let (X4, Xy, X—) be a triple of closely embedded Hilbert spaces. Then we
define 14 == j, and «_ := j='. By item (th3) we have

[{e—gs 4 F)xo| < llgllx [ fllx,  for  fedomey,gedome.

Hence, we can extend the sequilinear form (g, f)x_ x, = (t—g, ¢4 f)x, by continuity
to X_ x Xy. This sequilinear form is a dual pairing of Xy and A_ which leads to
(X4, X_) is a dual pair and (X4, Xy, X_) is a quasi Gelfand triple.

Let (X4, Xy, X—) be a quasi Gelfand triple. Then we define j; = ¢4 and j_ == 1=
and we immediately obtain that (X5, Xy, X_) is a triple of closely embedded Hilbert
spaces. a

1

APPENDIX B. AUXILIARY RESULTS

Lemma B.1. Let (x,)nen be a sequence in a normed vector space X that con-
verges w.r.t. the weak topology to an xg € X. Then (x,)nen @s bounded, i.e.,
sup,en || on | x < +o0.

Proof. Let ¢ denote the canonical embedding from X into X’ that maps z to
(z,-)x xr. Then, by assumption, for every fixed ¢ € X' (tz,,)(¢) — (tx0)(¢), in
particular sup,en|(t2,)(¢)| < oo. The principle of uniform boundedness yields
SUp,enl/ten|x” < 400. Since |uz|x» = ||z||x for every x € X, this proves the
assertion. a

Lemma B.2. Let (z,)nen be a weak convergent sequence in a Hilbert space H with
limit x. Then there exists a subsequence (Ty(x))ren such that

1 N
PRt
k=1

Proof. We assume that x = 0. For the general result we just need to replace x, by
Ty — T

We define the subsequence inductively: n(1) =1 and for k > 1 we choose n(k)
such that

— 0.

forall j <k.

El

(Tn (k) Tn(i))| <

This is possible, because (2, )nen converges weakly to 0. Hence, by Lemma B.1
sup,enlzn|| < C. This yields

1 N 2 N N
I IEEL D) DN
k=1 k=1j=1
N 1 N
= Nf Z |y I” + N2 Z > 2Re(@n k) Tng))
k=1 J=1k=j+1
N N
1, 2 1 1
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The next lemma is also true for general linear relations. However, since densely
defined linear operators are enough for our purpose we restrict ourselves to these
operators, also to use commonly known techniques.

Lemma B.3. Let (X1,Y1), (X1,721), (X2,Ys) and (Xa,Zs3) be dual pairs and
Ui:Y, = Z1 and Vo: Yo — Zy be the isomorphisms between Y, and Z1, and Ys
and Zs, respectively. Then for a densely defined linear operator A from X1 to Xo
we have

A*Z2x21 = [y A*v2xn1 \:[12—1

A% Zax 2,
VA Zo
A A
\ A\
vt o Vo) |wgt
A A
v AFYaxY \
2XY]
Yi Y,

FIGURE 6. A*7Z2x71 = Uy A*vaxvi P!

Proof. Let z5 € Z5 be such that \Ilz_lz € dom A*Y2x¥1, Then
<A‘T17 22>X27Z2 = <A931, \P2_122>X27Y2 = <A£l?1, \IJ2_122>X2,Y2 = <171, Ay l112_122>X17Y1
= <x17\I’1A*Y2XY1 l112_122>Xl721'

This implies ¥ A*Y2x"1 1112_1 C A*z2xz1, The same steps with Zs and Z; replaced
with Y5 and Y7 yield the reversed inclusion. a

The following theorem can be found in [11, Th. 2 p. 200], we just changed that
the operator maps into a different space, which does not change the proof.

Theorem B.4 (J. von Neumann). Let T be a closed linear operator from the Hilbert
space X to the Hilbert space Y. Then T*T and TT™* are self-adjoint, and (Ix +T*T)
and (Iy +TT*) are boundedly invertible.

Note that here the adjoint T* is calculated with respect to the “natural” dual
pairs (X, X) and (YY), i.e.,, T* = T*¥xx,

Proof. Since T* = [—(I)x I(’J’]TJ-, we have T & [IO _éx]T* = X x Y. Hence, for

Y

[2] € X x Y there are unique € dom T and y € dom 7™ such that

bl =17+ [0 ®

Consequently, h = x — T*y and y = —T'z, which implies € dom T*T and
h=x+T"'Tx.
Because of the uniqueness of the decomposition in (9), z € domT*T is uniquely
determined by h € X. Therefore, (Ix + T*T)~! is a well-defined and everywhere
defined operator.
For hl,hg S X, we define T = (IX + T*T)71h1 and To ‘= (IX + T*T)ilhg.
Then z1,22 € domT*T and, by the closedness of T', T** = T'. Hence,

(hi, (Ix + T*T) ‘he) = ((Ix + T*T)w1, x2) = (x1,x2) + (T*Tx1, x2)
= <£171, Z2> —+ <T:L’1,T£IZ‘2> = <£L’1, ZCQ> —+ <3’J1,T*T332>
= (x1,(Ix + T*T)xs) = ((Ix +T*T) *hy, ho),
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which yields that (Ix +7*T)~! is self-adjoint. Therefore (Ix + T*T) and T*T are
also self-adjoint. Moreover, (Ix + T*T)~! is bounded as a closed and everywhere
defined operator.

By TT* = (T*)*(T*) the other statements follow by the already shown. a

Lemma B.5. Let T be the operator from the previous theorem. Then domT*T is
a core of T'.

Proof. Note that domT*T is a core of T is equivalent that to domT*T is dense
in dom T with respect to the graph norm. Hence, it is sufficient to show that the
orthogonal complement of dom T*T is {0} w.r.t. the graph inner product. Suppose
dom T*T is not a core, then there exists an € dom T \ {0} such that

0= (z,y)r = (z,y)x + (T2, Ty)y = (z,y + T"Ty)x forall yedomT"T.

By Theorem B.4 (I 4 T*T)y is surjective, which implies = 0 and contradicts the
assumption. a

In the next proposition we will look at the situation where we deal with Hilbert
spaces, but work with another dual pair. We will denote the adjoint with respect
to the canonical Hilbert space dual pair by #*, and the adjoint with respect to the
other dual pair by *4.

Proposition B.6. Let X, H be Hilbert spaces, (X,Y) be a complete dual pair
and T: domT C X — H be a densely defined and closed linear operator. Then
T*T: domT*T C X — Y is self-adjoint, i.e., (T*T)* = T*T. Moreover,
domT*4T is a core of T.

Proof. For x,y € domT*4T we have
<T*dTm7y>Y,X = <T33,T?J>H = <-T7T*dTy>X,Y7

which leads to T*T C (T*T)*.

By Theorem B.4 we already know that T*»T is self-adjoint. Let ¥: X — Y
the duality mapping, i.e., (¥x,y)y,x = (z,y)x for x,y € X. Then T* = T
(by Lemma B.3) and therefore 7%¢T = UT*»T. Now for x € dom(7T*4T)* and
y € domT*T = dom T™*T we have

YL (ra )R = ((T*4T)*a = (z,T*T = (g, 0T T
(I ( )z y)x = (( )T y)yx = (T, Y)xy = (T, Y)x
=T*h
= <,’E,T*1‘Ty>x.

This implies W—1(T*aT)*a C (T*T)*» = T*»T and applying ¥ on both sides gives
(T"“’T)*d C T =T™*aT,

The last assertion follows from dom 7T*4T = dom T*»T and dom T*»T is a core
of T, a

REFERENCES

[1] J. Behrndt, S. Hassi, and H. de Snoo. Boundary value problems, Weyl functions, and
differential operators, volume 108 of Monographs in Mathematics. Birkhduser/Springer, Cham,
[2020] @2020. doi:10.1007/978-3-030-36714-5.

(2] J. Behrndt and M. Langer. Boundary value problems for elliptic partial differential operators on
bounded domains. J. Funct. Anal., 243(2):536-565, 2007. doi:10.1016/j.jfa.2006.10.009.

[3] Y. M. Berezanskil. Selfadjoint operators in spaces of functions of infinitely many variables,
volume 63 of Translations of Mathematical Monographs. American Mathematical Society,
Providence, RI, 1986. Translated from the Russian by H. H. McFaden. doi:10.1090/mmono/063.

[4] A. Buffa, M. Costabel, and D. Sheen. On traces for H(curl, Q) in Lipschitz domains. J. Math.
Anal. Appl., 276(2):845-867, 2002. doi:10.1016/S0022-247X(02)00455-9.

[5] P. Cojuhari and A. Gheondea. Triplets of closely embedded Hilbert spaces. Integral Equations
Operator Theory, 81(1):1-33, 2015. doi:10.1007/s00020-014-2195-0.


https://doi.org/10.1007/978-3-030-36714-5
https://doi.org/10.1016/j.jfa.2006.10.009
https://doi.org/10.1090/mmono/063
https://doi.org/10.1016/S0022-247X(02)00455-9
https://doi.org/10.1007/s00020-014-2195-0

32

6

NATHANAEL SKREPEK

| P. Cojuhari and A. Gheondea. On generalised triplets of Hilbert spaces. Proc. Rom. Acad.
Ser. A Math. Phys. Tech. Sci. Inf. Sci., 21(3):213-220, 2020.

[7] I. M. Gelfand and A. G. Kostyucenko. Expansion in eigenfunctions of differential and other

8

9

[10

[11

operators. Dokl. Akad. Nauk SSSR (N.S.), 103:349-352, 1955.

] M. Reed and B. Simon. Methods of modern mathematical physics. II. Fourier analysis,
self-adjointness. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London,
1975.

| N. Skrepek. Linear port-Hamiltonian Systems on Multidimensional Spatial Domains. PhD
thesis, University of Wuppertal, 2021. doi:10.25926/g7h8-bd50.

| N. Skrepek. Well-posedness of linear first order port-Hamiltonian systems on multidimen-
sional spatial domains. Evol. Equ. Control Theory, 10(4):965-1006, 2021. doi:10.3934/eect.
2020098.

| K. Yosida. Functional analysis, volume 123 of Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin-New
York, sixth edition, 1980. doi:10.1007/978-3-642-61859-8.

TU BERGAKADEMIE FREIBERG, INSTITUTE OF APPLIED ANALYSIS, AKADEMIESTRASSE 6, D-09596

FREIBERG, GERMANY

Email address: nathanael.skrepek@math.tu-freiberg.de


https://doi.org/10.25926/g7h8-bd50
https://doi.org/10.3934/eect.2020098
https://doi.org/10.3934/eect.2020098
https://doi.org/10.1007/978-3-642-61859-8

	1. Introduction
	2. Preliminary
	3. Motivation
	3.1. Starting point

	4. Definition and results
	5. Quasi Gelfand triples with Hilbert spaces
	6. Gram operators
	6.1. Decomposition into two ``ordinary'' Gelfand triples

	Conclusion
	Appendix A. Comparism to similar concepts
	Appendix B. Auxiliary results
	References

