
QUASI GELFAND TRIPLES

NATHANAEL SKREPEK

Abstract. We generalize the notion of Gelfand triples (also called Banach-
Gelfand triples or rigged Hilbert spaces) by dropping the necessity of a contin-
uous embedding. This means in our setting we lack of a chain inclusion. We

replace the continuous embedding by a closed embedding of a dense subspace.
This notion will be called quasi Gelfand triple. These triples appear naturally,

when we regard the boundary spaces of spatially multidimensional differential

operators, e.g., the Maxwell operator. We will show that there is a smallest
space where we can continuously embed the entire triple. Moreover, we will

show density results for intersections of members of the quasi Gelfand triple.

Finally, we show that every quasi Gelfand triple can be decomposed into two
“ordinary” Gelfand triples.

1. Introduction

Normally, when we talk about Gelfand triples we have a Hilbert space X0 and a
reflexive Banach space X+ that can be continuously and densely embedded into X0.
The third space X− is given by the completion of X0 with respect to

∥g∥X− := sup
f∈X+\{0}

|⟨g, f⟩X0
|

∥f∥X+

.

The duality between X+ and X− is given by

⟨g, f⟩X−,X+
= lim

k→∞
⟨gk, f⟩X0

,

where (gk)k∈N is a sequence in X0 that converges to g in X−. The space X− is then
isometrically isomorphic to X ′

+. The theory of Gelfand triples was introduced by
I.M. Gelfand and A.G. Kostyuchenko [7]. The concept has been refined over time.
In the introduction of [5] they give a short historical overview of Gelfand triples.

We want to weaken the assumptions such that the norm of X+ is not necessarily
related to the norm of X0. Hence, we cannot expect a continuous embedding of X+

into X0. However, we still want to construct the dual X− in terms of X0.
In [8] this generalized idea appears in Appendix to IX Example 3, but is not

further investigated. Moreover, this idea appears in [3, Sec. 2.11] under the name
triplets of spaces. However, they only scratch the surface as the section is three
pages long. In [5] this concept was treated seriously, the authors call it triples of
closely embedded Hilbert spaces. The motivation were weighted Sobolev and L2

spaces, where the positive weight is neither bounded from above nor from below.
Independently, [10] also developed this generalization of Gelfand triples under the
name quasi Gelfand triples, motivated by boundary spaces of differential operators,
e.g., the Maxwell operator. This led to a characterization of well-posed boundary
conditions for linear (spatially multdimensional) port-Hamiltonian systems. In [6]
the authors compare the notions triplets of spaces and triples of closely embedded
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Hilbert spaces and give conditions when they coincide. However, we will show in
Appendix A that all of these concepts (triplets of spaces, triples of closely embedded
Hilbert spaces and quasi Gelfand triples) coincide always (no condition needed).

In all previous approaches X+ was a Hilbert space. Here, amongst others, we lift
the setting of [10] to Banach spaces. So the beginning will be relatively similar to
the introduction of quasi Gelfand triples in [10]. This lifting has also be done in
the Ph.D. thesis [9]. However, we go beyond the refinements of [9] and show that
there exists a smallest space where we can structure preservingly embed the entire
quasi Gelfand triple in Section 5. Furthermore, we show a bijective relation between
quasi Gelfand triples and Gram operators in Section 6. This connection to Gram
operators has also been discovered in [5] or it was actually the starting point of
their journey. They call the Gram operator the Hamiltonian of the triple. However,
we take the next step and utilize this connection to the Gram operator to construct
a decomposition of the quasi Gelfand triple into two “ordinary” Gelfand triples.

In [4] the authors construct suitable boundary spaces for the tangential trace
and the twisted tangential trace that correspond to the curl operator. These spaces
naturally form a quasi Gelfand triple with L2(∂Ω) as pivot space. However, they
did not pay a lot of attention to this additional structure as they develop their
theory particular for the H(curl,Ω) traces (tangential and twisted tangential trace).
Moreover, they also give an explicit decomposition of the quasi Gelfand triple into
two “ordinary” Gelfand triple (without calling it that).

In Section 3 we will bring up the setting of [4] as a motivation for the notion
of quasi Gelfand triple. However, it is also suitable for other pairs of differential
operators, e.g., (symCurl,Curl), (CurlCurlT,CurlCurlT), (symGrad,Div), etc.

There is also a link to the notion of quasi boundary triples, which was introduced
in [2]. The combination of boundary triples and quasi Gelfand triples is not entirely
the same as quasi boundary triples, however both can be used to overcome limitations
of boundary triples alone.

2. Preliminary

Since we will often switch between Hilbert space inner products and dual pairings,
it is more convenient to always regard the anti-dual space instead of the dual space,
which we will do. The anti-dual space is the space of all continuous antilinear
mappings from the vector space to C. Moreover, we will use a generalized concept
for (unbounded) linear operators, namely linear relations. The following notion
of linear relations, dual pairs and adjoints with respect to dual pairs are carefully
covered in [9, Ch. 1, Ch. 2]. Linear relations in Hilbert spaces are also properly
introduced in [1].

A linear relation T between the vector spaces X and Y is a linear subspace of
X × Y . Clearly, every linear operator is also a linear relation (we do not distinguish
between a function and its graph). For linear operators we have [ xy ] ∈ T is equivalent
to Tx = y. We will use the following notation

kerT := {x ∈ X | [ x0 ] ∈ T}, ranT := {y ∈ Y | ∃x : [ xy ] ∈ T},
mulT :=

{
y ∈ Y

∣∣ [ 0
y

]
∈ T

}
, domT := {x ∈ X | ∃y : [ xy ] ∈ T}.

Thus, T is single-valued (an operator), if mulT = {0}. The closure T of a linear
relation T is the closure in X × Y . Note that every linear relation is closable. Also
every operator has a closure as a linear relation, but its closure can be multi-valued.
Therefore, showing mulT = {0} is necessary, even if mulT = {0}.

Definition 2.1. Let X and Y be Banach spaces and let ⟨·, ·⟩Y,X : Y ×X → C be
continuous and sesquilinear (linear in the first argument and antilinear in the second
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argument). We define

Ψ:

{
Y → X ′,
y 7→ ⟨y, ·⟩Y,X ,

and Φ:

{
X → Y ′,

x 7→ ⟨·, x⟩Y,X .
If Ψ is isometric and bijective, then we say that (X,Y ) is a (anti-)dual pair and
⟨·, ·⟩Y,X is its (anti-)dual pairing.

We define
⟨x, y⟩X,Y := ⟨y, x⟩Y,X ,

which is again a sesquilinear form.
If also Φ is isometric and bijective, then we say that (X,Y ) is a complete (anti-)-

dual pair.

Clearly, (X,X ′) is a dual pair with the canonical dual pairing ⟨x′, x⟩X′,X = x′(x)
and it is complete, if X is reflexive. For a Hilbert space (H,H) is a complete
dual pair with the inner product as dual pairing ⟨x, y⟩H,H = ⟨x, y⟩H . However,
if we think of the Sobolev space H1(R) there are two “natural” possible dual
pairings: the standard Hilbert space (complete) dual pair (H1(R),H1(R)) and
the dual pair that is induced by the L2 inner product (H1(R),H−1(R)) given by
⟨x, y⟩H1(R),H−1(R) = limn→∞⟨x, yn⟩L2(R). Hence, in order to avoid saying both H1(R)
and H−1(R) is the dual space of H1(R), which can lead to confusion, we prefer the
term (complete) dual pair.

Definition 2.2. Let (X1, Y1), (X2, Y2) be dual pairs and A a linear relation between
X1 and X2. Then we define the adjoint linear relation by

A∗Y2×Y1 :=

{[
y2
y1

]
∈ Y2 × Y1

∣∣∣∣ ⟨y2, x2⟩Y2,X2
= ⟨y1, x1⟩Y1,X1

for all

[
x1
x2

]
∈ A

}
.

We will just write A∗, if the dual pairs are clear.
For a Banach space X, we will regard the dual pair (X,X ′) for the adjoint, if no

other dual pair is given. Similar, for a Hilbert space H we will regard the dual pair
(H,H), if no other dual pair is given.

Note that this definition matches the usual Hilbert space adjoint, if A is a densely
defined operator between two Hilbert spaces.

Remark 2.3. If A is an operator (mulA = {0}) from X1 to X2, then we can
characterize the domain of A∗ by

y2 ∈ domA∗ ⇔ domA ∋ x1 7→ ⟨y2, Ax1⟩Y2,X2 is continuous w.r.t. ∥·∥X1 .

Moreover, we have the following relations

kerA∗ = (ranA)⊥ and mulA∗ = (domA)⊥,

where M⊥ denotes the annihilator space of M (which is the orthogonal complement
in the Hilbert space case).

3. Motivation

Let Ω ⊆ R3 be a bounded open set with bounded Lipschitz boundary. For
f, g ∈ C∞(R3) we have the following integration by parts formula:

⟨div f, g⟩L2(Ω) + ⟨f, grad g⟩L2(Ω) = ⟨ν · γ0f, γ0g⟩L2(∂Ω),

where ν is the normal vector on ∂Ω and γ0 is the boundary trace. It is also well
known that we can extend this formula for f ∈ H(div,Ω) and g ∈ H1(Ω):

⟨div f, g⟩L2(Ω) + ⟨f, grad g⟩L2(Ω) = ⟨γνf, γ0g⟩H−1/2(∂Ω),H1/2(∂Ω),

where γν is the continuous extension of ν · γ0. In this extension we stumble over
the Gelfand triple (H1/2(∂Ω),L2(∂Ω),H−1/2(∂Ω)). However, in general such an
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integration by parts formula will not automatically lead to such an extension where
we can replace the L2 inner product on the boundary by a dual pairing that comes
from a Gelfand triple with L2(∂Ω) as pivot space. For example for f, g ∈ C∞(R3)
we have

⟨curl f, g⟩L2(Ω) + ⟨f, curl g⟩L2(Ω) = ⟨ν × γ0f, (ν × γ0g)× ν⟩L2(∂Ω), (1)

but contrary to the previous case neither ν×γ0 nor (ν×γ0)× ν can be continuously
extended to H(curl,Ω) such that its codomain is still L2(∂Ω) (or can be continuously
embedded into L2(∂Ω)), see [10, Ex. A.4]. Hence, in order to better understand the
relation between the extension of (1) to H(curl,Ω) and the L2(∂Ω) inner product
we need a more general tool than Gelfand triples. In order to try to find a suitable
boundary space such that we can extend ν× γ0 on H(curl,Ω), we endow ran(ν× γ0)
with the range norm that comes from H(curl,Ω). This gives a norm on a dense
subspace of L2

τ (∂Ω) = {ϕ ∈ L2(∂Ω) | ν · f = 0} that is unrelated to ∥·∥L2(∂Ω). This
setting will be our starting point. This particular problem was treated in [10].
Here we want to discover the world of quasi Gelfand triples without any particular
applications in mind (or maybe with Conjectures 6.7 and 6.8 in mind).

3.1. Starting point. We will have the following setting: Let X0 be a Hilbert space
with the inner product ⟨·, ·⟩X0

and ⟨·, ·⟩X+
be another inner product on X0 (not

necessarily related to ⟨·, ·⟩X0
), which is defined on a dense (w.r.t. ∥·∥X0

) subspace

D̃+ of X0. We denote the completion of D̃+ w.r.t. ∥·∥X+
(∥f∥X+

:=
√
⟨f, f⟩X+

)
by X+. This completion is, by construction a Hilbert space with the extension of

⟨·, ·⟩X+
, for which we use the same symbol. Now we have D̃+ is dense in X0 w.r.t.

∥·∥X0
and dense in X+ w.r.t. ∥·∥X+

. Figure 1 illustrates this setting.

Note that X+, as a Hilbert space, is automatically reflexive. For the further
construction the crucial property of X+ is its reflexivity. Hence, we will weaken the
previous setting such that X+ is only a reflexive Banach space:

• X0 Hilbert space endowed with ⟨·, ·⟩X0
.

• D̃+ dense subspace of X0 (w.r.t. ∥·∥X0
).

• ∥·∥X+ another norm defined on D̃+.

• X+ completion of D̃+ with respect to ∥·∥X+
is reflexive.

X+

X0

D̃+

Figure 1. Setting of X0, D̃+ and X+.

Example 3.1. Let X0 = ℓ2(Z \ {0}) with the standard inner product ⟨x, y⟩X0
=∑∞

n=1 xnyn + x−ny−n. We define the inner product

⟨x, y⟩X+
:=

∞∑
n=1

n2xnyn +
1

n2
x−ny−n
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and the set D̃+ := {f ∈ X0 | ∥f∥X+
< +∞}. Clearly, this inner product is well-

defined on D̃+. Let ei denote the sequence which is 1 on the i-th position and 0
elsewhere. Since {ei | i ∈ Z \ {0}} is a orthonormal basis of X0 and contained in

D̃+, D̃+ is dense in X0. The sequence
(∑n

i=1 e−i

)
n∈N is a Cauchy sequence with

respect to ∥·∥X+ , but not with respect to ∥·∥X0 .

Definition 3.2. We define

∥g∥X− := sup
f∈D̃+\{0}

|⟨g, f⟩X0
|

∥f∥X+

for g ∈ X0 and D− :=
{
g ∈ X0

∣∣∣ ∥g∥X− < +∞
}
.

We denote the completion of D− w.r.t. ∥·∥X− by X−. We will also denote the
extension of ∥·∥X− to X− by ∥·∥X− .

Remark 3.3. By definition of D− we can identify every g ∈ D− with an element of
X ′

+ by the continuous extension of

ψg :

{
D+ → C,
f 7→ ⟨g, f⟩X0

,

on X+. We denote this extension again by ψg. By definition of D− we have
∥ψg∥X ′

+
= ∥g∥X− for g ∈ D−. Hence, we can extend the isometry

Ψ:

{
D− → X ′

+,
g 7→ ψg,

by continuity on X−, this is extension is again denoted by Ψ. So X− can be seen as
the closure of D− in X ′

+.

We can define a dual pairing between X+ and X− by

⟨g, f⟩X−,X+
:= ⟨Ψg, f⟩X ′

+,X+
.

However, this does not necessarily make (X+,X−) a dual pair in the sense of
Definition 2.1, because we do not know whether Ψ is surjective.

Lemma 3.4. D− is complete with respect to ∥g∥X−∩X0
:=

√
∥g∥2X0

+ ∥g∥2X−
.

Proof. Let (gn)n∈N be a Cauchy sequence in D− with respect to ∥·∥X−∩X0
. Then

(gn)n∈N is a convergent sequence in X0 (w.r.t. ∥·∥X0) and a Cauchy sequence in D−
(w.r.t. ∥·∥X−). We denote the limit in X0 by g0. By definition of ∥·∥X− we obtain

for f ∈ D̃+

|⟨g0, f⟩X0
| = lim

n→∞
|⟨gn, f⟩X0

| ≤ lim
n→∞

∥gn∥X−∥f∥X+
≤ C∥f∥X+

and consequently g0 ∈ D−.
Let ϵ > 0 be arbitrary. Since (gn)n∈N is a Cauchy sequence with respect to ∥·∥X− ,

there is an n0 ∈ N such that for all f ∈ D̃+ with ∥f∥X+ = 1

|⟨gn − gm, f⟩X0
| ≤ ϵ

2
, if n,m ≥ n0

holds true. Furthermore, for every f ∈ D̃+ there exists an mf ≥ n0 such that

|⟨g0 − gmf
, f⟩X0

| ≤ ϵ∥f∥X+

2 , because gm → g0 w.r.t. ∥·∥X0
. This yields

|⟨g0 − gn, f⟩X0 |
∥f∥X+

≤
|⟨g0 − gmf

, f⟩X0
|

∥f∥X+

+
|⟨gmf

− gn, f⟩X0
|

∥f∥X+

≤ ϵ, if n ≥ n0.

Since the right-hand-side is independent of f , we obtain

∥g0 − gn∥X− = sup
f∈D̃+\{0}

|⟨g0 − gn, f⟩X0
|

∥f∥X+

≤ ϵ, if n ≥ n0.

Hence, g0 is also the limit of (gn)n∈N with respect to ∥·∥X− and consequently the
limit of (gn)n∈N with respect to ∥·∥X−∩X0

. ❑
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Strictly speaking D̃+ and D− are subsets of X0, but sometimes we rather want to
regard them as subsets of X+ and X−, respectively. Hence, introduce the following
embedding mappings

ι̃+ :

{
D̃+ ⊆ X+ → X0,

f 7→ f,
and ι− :

{
D− ⊆ X− → X0,

g 7→ g.

This allows us to distinguish between f ∈ D̃+ as element of X+ and ι̃+(f) as element
of X0, if necessary. Clearly, the same for g ∈ D−.

Lemma 3.5. The embedding ι̃+ is a densely defined operator with ran ι̃+ is dense
in X0 and ker ι̃+ = {0}. Furthermore, the embedding ι− is closed and ker ι− = {0}.

Proof. By assumption on D̃+ and definition of X+ the embedding ι̃+ is densely
defined and has a dense range. Clearly, ker ι̃+ = {0} and ker ι− = {0}. By
Lemma 3.4 ι− is closed. ❑

Lemma 3.6. Let ι̃∗+ = ι̃
∗X0×X′

+

+ denote the adjoint relation (w.r.t. the dualities
(X0,X0) and (X+,X ′

+)) of ι̃+. Then ι̃∗+ is an operator (single-valued, i.e., mul ι̃∗+ =
{0}) and ker ι̃∗+ = {0}. Its domain coincides with D− and ι̃∗+ι− : D− ⊆ X− → X ′

+

is isometric.
If ker ι̃+ = {0}, then ran ι̃∗+ is dense in X ′

+.

Proof. The density of the domain of ι̃+ yields mul ι̃∗+ = (dom ι̃+)
⊥ = {0}, and

ran ι̃+
X0

= X0 yields ker ι̃∗+ = {0}. The following equivalences show dom ι̃∗+ = D−:

g ∈ dom ι̃∗+ ⇔ D̃+ ∋ f 7→ ⟨g, ι̃+f⟩X0
is continuous w.r.t. ∥·∥X+

⇔ sup
f∈D̃+\{0}

|⟨g, f⟩X0
|

∥f∥X+

< +∞

⇔ g ∈ D−.

For g ∈ D− ⊆ X− we have

∥g∥X− = sup
f∈D̃+\{0}

|⟨ι−g, f⟩X0
|

∥f∥X+

= sup
f∈D̃+\{0}

|⟨ι̃∗+ι−g, f⟩X ′
+,X+

|
∥f∥X+

= ∥ι̃∗+ι−g∥X ′
+
,

which proves that ι̃∗+ι− is isometric.

Note that the reflexivity of X+ implies ι̃+ = ι̃∗∗+ . If ker ι̃+ = {0}, then the
following equation implies the density of ran ι̃∗+ in X ′

+

{0} = ker ι̃+ = ker ι̃∗∗+ = (ran ι̃∗+)
⊥. ❑

Remark 3.7. As mentioned in Remark 3.3 every g ∈ D− can be regarded as an

element of X ′
+ by ψg. Let g ∈ D−, f ∈ X+ and (fn)n∈N in D̃+ converging to f w.r.t.

∥·∥X+ . Since D− = dom ι̃∗+, we have

⟨ψg, f⟩X ′
+,X+

= lim
n→∞

⟨g, fn⟩X0
= lim

n→∞
⟨ι−g, ι̃+fn⟩X0

= ⟨ι̃∗+ι−g, f⟩X ′
+,X+

and consequently ψg = ι̃∗+ι−g. Hence, ΨD− = ι̃∗+ι−D− = ran ι̃∗+.

Proposition 3.8. The following assertions are equivalent.

(i) There is a Hausdorff topological vector space (Z, T ) and two continuous
embeddings ϕX+ : X+ → Z and ϕX0 : X0 → Z such that the diagram

D̃+ X+

Z

D̃+ X0

ι̃+

id

ϕX+

ι̃−1
+

id
ϕX0
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commutes.

(ii) If D̃+ ∋ fn → 0 w.r.t. ∥·∥X+
and limn→∞ fn exists w.r.t. ∥·∥X0

, then this

limit is also 0 and if D̃+ ∋ fn → 0 w.r.t. ∥·∥X0
and limn→∞ fn exists w.r.t.

∥·∥X+
, then this limit is also 0.

(iii) ι̃+ : D̃+ ⊆ X+ → X0, f 7→ f is closable (as an operator) and its closure is
injective.

(iv) D− is dense in X0 and dense in X ′
+, i.e., ΨD− is dense in X ′

+.

Proof. We will follow the strategy (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i).

(i) ⇒ (ii): Let (fn)n∈N be a sequence in D̃+ such that fn → f̂ w.r.t. X+ and fn → f
w.r.t. X0. Since T is coarser than both of the topologies induced by these norms,
we also have

f̂

fn

f

T

T
in Z.

Since T is Hausdorff, we conclude f = f̂ . Hence, if either f̂ or f is 0, then also
the other is 0.

(ii) ⇒ (iii): If (fn, fn)n∈N is a sequence in ι̃+ that converges to (0, f) ∈ X+ × X0,
then f = 0 by (ii). Hence, mul ι̃+ = {0} and consequently ι̃+ is closable. On the
other hand, if (fn, fn)n∈N is a sequence in ι̃+ that converges to (f, 0), then f = 0
by (ii). Consequently, ker ι̃+ = {0} and ι̃+ is injective.

(iii) ⇒ (iv): We have (dom ι̃∗+)
⊥ = mul ι̃∗∗+ = mul ι̃+. Since ι̃+ is closable, we have

mul ι̃+ = {0}, which implies that dom ι̃∗+ is dense in X0. By Lemma 3.6 dom ι̃∗+
coincides with D−, which gives the density of D− in X0.

The second assertion of Lemma 3.6 yields that ran ι̃∗+ is dense in X ′
+. By

Remark 3.7 we have ran ι̃∗+ = ΨD− and therefore the density of ΨD− in X ′
+.

(iv) ⇒ (i): Let Y := D− be equipped with

∥g∥Y := ∥g∥X−∩X0
=

√
∥g∥2X−

+ ∥g∥2X0
.

We define Z := Y ′ as the (anti-)dual space of Y . Then we have

|⟨f, g⟩X0
| ≤ ∥f∥X0

∥g∥X0
≤ ∥f∥X0

∥g∥Y for f ∈ X0, g ∈ Y

and |⟨f, ι̃∗+g⟩X+,X ′
+
| ≤ ∥f∥X+

∥ι̃∗+g∥X ′
+︸ ︷︷ ︸

=∥g∥X−

≤ ∥f∥X+
∥g∥Y for f ∈ X+, g ∈ Y.

Hence, ϕX0 : f 7→ ⟨f, ·⟩X0 and ϕX+ : f 7→ ⟨f, ι̃∗+·⟩X+,X ′
+
are continuous mappings

from X0 and X+, respectively, into Z. The injectivity of these mappings follows
from the density of D− in X0 and D− in X ′

+ (ι̃∗+D− dense in X ′
+), respectively.

For f ∈ D̃+ we have

ϕX+f = ⟨f, ι̃∗+·⟩X+,X ′
+
= ⟨ι̃+f, ·⟩X0 = ϕX0 ◦ ι̃+f

and consequently the diagram in (i) commutes. ❑

If one and therefore all assertions in Proposition 3.8 are satisfied, then X+ ∩
X0 is defined as the intersection in Z and complete with the norm ∥·∥X+∩X0

:=√
∥·∥2X+

+ ∥·∥2X0
. Moreover, we define D+ as the closure of D̃+ in X+ ∩ X0 (w.r.t.

∥·∥X+∩X0
). Note that although X+ ∩X0 may depend on Z, D+ is independent of Z.

We will denote the extension of ι̃+ to D+ by ι+, which can be expressed by ι+ = ι̃+.
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The adjoint ι∗+ coincides with ι̃∗+. Also D− does not change, if we replace D̃+ by
D+ in Definition 3.2 and all previous results in this section also hold for D+ and ι+
instead of D̃+ and ι̃+, respectively. If ι̃+ is already closed, then D+ = D̃+.

Lemma 3.9. Let one assertion in Proposition 3.8 be satisfied. Let Z = Y ′, where

Y = D− endowed with ∥g∥Y := ∥g∥X−∩X0
=

√
∥g∥2X−

+ ∥g∥2X0
(from Proposition 3.8

(iv) ⇒ (i)). Then we have the following characterization for D+:

• D+ = dom ι∗−,

• D+ = X+ ∩ X0 in Y ′.

Proof. Note that for g ∈ D− we have g = (ι∗+)
−1ι∗+g and that ι∗+ι− is isometric from

D− = dom ι− ⊆ X− onto ran ι∗+ = dom(ι∗+)
−1 ⊆ X ′

+. The following equivalences
show the first assertion:

f ∈ dom ι∗− ⇔ D− ∋ g 7→ ⟨f, ι−g⟩X0
is continuous w.r.t. ∥·∥X−

⇔ D− ∋ g 7→ ⟨f, (ι∗+)−1ι∗+ι−g⟩X0
is continuous w.r.t. ∥·∥X−

⇔ dom(ι∗+)
−1 ∋ h 7→ ⟨f, (ι∗+)−1h⟩X0 is continuous w.r.t. ∥·∥X ′

+

⇔ f ∈ dom
(
(ι∗+)

−1
)∗

= dom ι−1
+ = ran ι+ = D+.

For the second characterization we define P+ := X+ ∩ X0 and we define P−
analogously to D− in Definition 3.2:

∥g∥P− := sup
f∈P+\{0}

|⟨g, f⟩X0
|

∥f∥X+

and P− := {g ∈ X0 | ∥g∥P− < +∞}.

Clearly, ∥g∥X− ≤ ∥g∥P− for g ∈ P− and consequently P− ⊆ D−. Furthermore, we
can define ιP+

: P+ ⊆ X+ → X0, f 7→ f analogously to ι̃+. Note that ιP+
is closed

due the completeness of (X+ ∩ X0, ∥·∥X+∩X0
). Then we have dom ι∗P+

= P− and

ι̃+ ⊆ ιP+ and therefore ι∗P+
⊆ ι̃∗+. For g ∈ D− and f ∈ P+ we have, by definition of

P+ = X+ ∩ X0 in Z,

|⟨g, f⟩X0
| = |⟨ι̃∗+g, f⟩X ′

+,X+
| ≤ ∥ι̃∗+g∥X ′

+
∥f∥X+

= ∥g∥X−∥f∥X+
,

which yields ∥g∥P− ≤ ∥g∥X− . Hence, P− = D−, ι
∗
P+

= ι̃∗+ and ιP+
= ι̃+, which is

equivalent to P+ = X+ ∩ X0 = D̃+

X+∩X0

= D+. ❑

Theorem 3.10. Let one assertion in Proposition 3.8 be satisfied. Then the contin-
uous extension of ι∗+ι− denoted by ι∗+ι− equals Ψ. Moreover, Ψ is surjective and
(X+,X−) is a complete dual pair with

⟨g, f⟩X−,X+
:= ⟨Ψg, f⟩X ′

+,X+
.

Proof. We have already shown, that ι∗+ι−g = Ψg for g ∈ D−. Since D− is dense in

X−, we also have ι∗+ι−g = Ψg for g ∈ X−.
If one assertion in Proposition 3.8 is true, then all of them are true. Hence, ΨD−

is dense in X ′
+ and because Ψ is isometric ranΨ is closed and therefore ranΨ = X ′

+.
Since Ψ is an isomorphism between X− and X ′

+, it immediately follows that
(X+,X−) is a complete dual pair with the dual pairing ⟨·, ·⟩X−,X+ . ❑

Remark 3.11. For f ∈ D+ and g ∈ D− we have

⟨g, f⟩X−,X+ = ⟨Ψg, f⟩X ′
+,X+

= ⟨ι∗+ι−g, f⟩X ′
+,X+

= ⟨ι−g, ι+f⟩X0 = ⟨g, f⟩X0 .

Since these two sets are dense in X+ and X− respectively, we have for f ∈ X+ and
g ∈ X−

⟨g, f⟩X−,X+
= lim

(n,m)→(∞,∞)
⟨gn, fm⟩X0

,
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X0

ra
n
ι+

ran
ι−

ran ι+
∩

ran ι−

X+

dom ι+

ι+

X−
dom ι−

ι−

Figure 2. Illustration of a quasi Gelfand triple

where (fm)m∈N is a sequence in D+ that converges to f in X+ and (gn)n∈N is a
sequence in D− that converges to g in X−.

4. Definition and results

The previous section leads to the following definition.

Definition 4.1. Let (X+,X−) be a complete dual pair and X0 be a Hilbert space.
Furthermore, let ι+ : dom ι+ ⊆ X+ → X0 and ι− : dom ι− ⊆ X− → X0 be densely
defined, closed, and injective linear mappings with dense range. We call (X+,X0,X−)
a pre-quasi Gelfand triple, if

⟨g, f⟩X−,X+ = ⟨ι−g, ι+f⟩X0 (2)

for all f ∈ dom ι+ and g ∈ dom ι−. The space X0 will be referred as pivot space.
If we additionally have dom ι∗+ = ran ι−, then we call (X+,X0,X−) a quasi

Gelfand triple.

Figure 2 illustrates the setting of a quasi Gelfand triple. Contrary to the previous
section we will regard the adjoint of ι+ and ι− with respect to the complete dual
pairs (X+,X−) and (X0,X0). Therefore, ι

∗
+ is a densely defined operator from X0

to X− and ι∗− is a densely defined operator from X0 to X+. We could not do this
before, because we did not know from the beginning that (X+,X−) is a complete
dual pair.

Example 4.2. Let X+ = Lp(R), X− = Lq(R) and X0 = L2(R), where p ∈ (1,+∞)
and 1

p + 1
q = 1. Then (X+,X−) is a complete dual pair. Note that Lp(R) ∩ L2(R) is

already well-defined. We can define

ι+ :

{
Lp(R) ∩ L2(R) ⊆ Lp(R) → L2(R),

f 7→ f,

and ι− :

{
Lq(R) ∩ L2(R) ⊆ Lq(R) → L2(R),

g 7→ g.

These mapping are densely defined, injective and closed with dense range. By
definition of the dual pairing of (Lp(R),Lq(R)) we have

⟨g, f⟩Lq(R),Lp(R) =

∫
R
gf dλ = ⟨g, f⟩X0

= ⟨ι−g, ι+f⟩X0
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X+ X−

X0

D+ D−

D+∩D−

Figure 3. Illustration of a quasi Gelfand triple, where D+ = ran ι+
and D− = ran ι−.

for g ∈ Lq(R) ∩ L2(R) and f ∈ Lp(R) ∩ L2(R). By the Hölder inequality we also
have dom ι∗+ = ran ι−. Hence, (Lp(R),L2(R),Lq(R)) is a quasi Gelfand triple.

Note that the mapping ι+ gives us an identification of dom ι+ and ran ι+. Hence,
we can introduce the norm of X+ on ran ι+ by ∥f∥X+ = ∥ι−1

+ f∥X+ for f ∈ ran ι+.
Then the completion of ran ι+ with respect to ∥·∥X+ is isometrically isomorphic to
X+. Accordingly, we can do the same for X−. This justifies the following definition
and Figure 3.

Definition 4.3. For a quasi Gelfand triple (X+,X0,X−) we define

X+ ∩ X0 := ran ι+ and X− ∩ X0 := ran ι−.

If either ι+ or ι− is continuous, then a quasi Gelfand triple is an “ordinary”
Gelfand triple. Clearly, every “ordinary” Gelfand triple is also a quasi Gelfand
triple.

The additional condition dom ι∗+ = ran ι− that makes a pre-quasi Gelfand triple
a quasi Gelfand triple is not crucial as it can always be forced, which we will see
later in Lemma 4.5. In Conjectures 6.7 and 6.8 we ask ourselves, if this condition
is automatically fulfilled. Moreover, the next lemma shows that we can also ask
for the converse condition dom ι∗− = ran ι+ instead. Note that from (2) we can
immediately see that dom ι∗+ ⊇ ran ι− and dom ι∗− ⊇ ran ι+. Hence, for f ∈ dom ι+
and g ∈ dom ι− we have

⟨g, f⟩X−,X+ = ⟨ι−g, ι+f⟩X0 =

{
⟨ι∗+ι−g, f⟩X−,X+

,

⟨g, ι∗−ι+f⟩X−,X+
,

(3)

which implies ι∗+ι−g = g and ι∗−ι+f = f .

Lemma 4.4. Let (X+,X0,X−) be a pre-quasi Gelfand triple with the embeddings ι+
and ι−. Then

dom ι∗+ = ran ι− ⇔ dom ι∗− = ran ι+.

In particular, if (X+,X0,X−) is a quasi Gelfand triple, then also dom ι∗− = ran ι+
holds true.

The proof of this is basically the first part of the proof of Lemma 3.9.

Proof. Let dom ι∗+ = ran ι−. The following equivalences

f ∈ dom ι∗− ⇔ dom ι− ∋ g 7→ ⟨f, ι−g⟩X0
is continuous w.r.t. ∥·∥X−

⇔ dom ι− ∋ g 7→ ⟨f, (ι∗+)−1 ι∗+ι−g︸ ︷︷ ︸
=g

⟩X0 is continuous w.r.t. ∥·∥X−

⇔ f ∈ dom
(
(ι∗+)

−1
)∗

= dom ι−1
+ = ran ι+
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imply dom ι∗− = ran ι+.
The other implication follows analogously. ❑

In contrast to “ordinary” Gelfand triple, the setting for quasi Gelfand triple
is somehow “symmetric”, i.e., the roles of X+ and X− are interchangeable, since
neither of the embeddings ι+ and ι− has to be continuous.

Lemma 4.5. Let (X+,X0,X−) be a pre-quasi Gelfand triple with the embeddings
ι+ and ι−. Then there exists an extension ι̂− of ι− that respects (2) and satisfies
dom ι∗+ = ran ι̂−. In particular, (X+,X0,X−) with ι+ and ι̂− forms a quasi Gelfand
triple.

Proof. Note that ι∗+ι−g = g. Hence, ι∗+ ⊇ ι−1
− and (ι∗+)

−1 ⊇ ι−. We define ι̂− as
(ι∗+)

−1. Then clearly ran ι̂− = dom ι∗+. For f ∈ dom ι+ and g ∈ dom ι̂− we have

⟨ι̂−g, ι+f⟩X0
= ⟨ι∗+ι̂−g, f⟩X−,X+

= ⟨g, f⟩X−,X+
. ❑

Alternatively, we could have extended ι+ by setting ι̂+ := (ι∗−)
−1 in the previous

lemma to obtain a quasi Gelfand triple.

Remark 4.6. If (X+,X0,X−) is a quasi Gelfand triple and (X+, X̃−) is another dual

pair for X+, then also (X+,X0, X̃−) is a quasi Gelfand triple.

Lemma 4.7. Let (X+,X0,X−) be a quasi Gelfand triple. Then

ι∗+ = ι−1
− and ι∗− = ι−1

+ .

Proof. By (3) we have ι∗+ι−g = g for all g ∈ dom ι+. Since ran ι− = dom ι∗+ (by

assumption), we conclude that ι∗+ = ι−1
− .

Analogously, the second equality can be shown. ❑

Theorem 4.8. Let X+ be a reflexive Banach space and X0 be a Hilbert space and
ι+ : dom ι+ ⊆ X+ → X0 be a densely defined, closed, and injective linear mapping
with dense range. Then there exists a Banach space X− and a mapping ι− such that
(X+,X0,X−) is a quasi Gelfand triple.

In particular, X− is given by Definition 3.2, where D+ = ran ι+.

Proof. We will identify dom ι+ with ran ι+ and denote it by D+. Then item (iii) of
Proposition 3.8 is satisfied. Hence, the corresponding D− (Definition 3.2) is dense
in X0 and its completion X− (w.r.t. to ∥·∥X−) establishes the complete dual pair
(X+,X−), by Theorem 3.10. The mapping

ι− :

{
D− ⊆ X− → X0,

g 7→ g,

is densely defined and injective by construction. By the already shown ran ι− = D−
is dense in X0. Finally, by Lemma 3.5 ι− is closed and by Lemma 3.6 dom ι∗+ =
D− = ran ι−. ❑

Remark 4.9. By Theorem 4.8 the setting in the beginning of Section 3 establishes a
quasi Gelfand triple, if one assertion of Proposition 3.8 is satisfied.

From now on we will assume that (X+,X0,X−) is a quasi Gelfand triple and we
will identify dom ι+ with ran ι+ and denote it by D+ as in Figure 3. Analogously,
we identify dom ι− with ran ι− and denote it with D−.

These identifications are really meaningful as we can endow D+ (as a subset of
X0) with ∥f∥X+

:= ∥ι−1
+ f∥X+

for f ∈ D+. Then the completion of D+ w.r.t. to this
norm is clearly isomorphic to X+. The same goes for D−.
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The set D− = ran ι− (previous identification) coincides with the set D− defined

in Definition 3.2 for D̃+ := D+.

Proposition 4.10. The space D+ ∩D− is complete with respect to

∥·∥X+∩X− :=
√
∥·∥2X+

+ ∥·∥2X−
and ∥f∥X0

≤ ∥f∥X+∩X− ∀f ∈ D+ ∩D−.

Proof. For f ∈ D+ ∩D− we have

∥f∥2X0
= |⟨f, f⟩X0

| = |⟨f, f⟩X−,X+
| ≤ ∥f∥X−∥f∥X+

≤ ∥f∥2X+∩X−
.

Hence, every Cauchy sequence in D+ ∩ D− with respect to ∥·∥X+∩X− is also a
Cauchy sequence with respect to ∥·∥X0

, ∥·∥X+
and ∥·∥X− .

Let (fn)n∈N be a Cauchy sequence in D+ ∩D− with respect to ∥·∥X+∩X− . By
the closedness of ι+ the limit with respect to ∥·∥X0

and the limit with respect to
∥·∥X+

coincide. The same argument for ι− yields that the limit with respect to
∥·∥X0 and the limit with respect ∥·∥X− also coincide. Therefore, all these limits have
to coincide and (fn)n∈N converges to that limit in D+ ∩D− w.r.t. ∥·∥X+∩X− . ❑

Lemma 4.11. The operator

[
ι+ ι−

]
:

 D+ ×D− ⊆ X+ ×X− → X0,[
f
g

]
7→ f + g,

is closed.

Proof. Let
(([

fn
gn

]
, zn

))
n∈N be a sequence in

[
ι+ ι−

]
that converges to

([
f
g

]
, z
)
in

X+ ×X− ×X0, i.e.,

lim
n→∞

fn = f (w.r.t. ∥·∥X+
),

lim
n→∞

gn = g (w.r.t. ∥·∥X−),

and lim
n→∞

fn + gn = lim
n→∞

zn = z (w.r.t. ∥·∥X0).

Then we have

∥z∥2X0
= lim

n→∞
∥fn + gn∥2X0

= lim
n→∞

(
∥fn∥2X0

+ ∥gn∥2X0
+ 2Re⟨fn, gn⟩X0

)
.

Since 2Re⟨fn, gn⟩X0 converges to 2Re⟨f, g⟩X+,X− , we conclude that ∥fn∥X0 and
∥gn∥X0

are bounded. Hence, there exists a subsequence of (fn)n∈N that converges

weakly (in X0) to an f̃ ∈ X0. Moreover, by Lemma B.2 we can pass on to a

further subsequence (fn(k))k∈N such that
(
1
j

∑j
k=1 fn(k)

)
j∈N converges to f̃ strongly

(w.r.t. ∥·∥X0
). The sequence

(
1
j

∑j
k=1 fn(k)

)
j∈N has still the limit f in X+ (w.r.t.

∥·∥X+
) and because ι+ is closed we conclude that f = f̃ ∈ D+. By linearity of the

limit we also have 1
j

∑j
k=1 gn(k) → z − f in X0 for the same subsequence. Since

1
j

∑j
k=1 gn(k) is a Cauchy sequence in both X− and X0, the closedness of ι− gives

that g = z − f ∈ D−. Hence, z =
[
ι+ ι−

] [
f
g

]
and the operator

[
ι+ ι−

]
is

closed. ❑

Proposition 4.12. D+ ∩D− is dense in X0 with respect to ∥·∥X0 .

Proof. By dom ι∗± = ran ι∓ = D∓ (Lemma 4.4) and mul
[
ι+ ι−

]
= {0} we have

X0 =
(
mul

[
ι+ ι−

] )⊥
= dom

[
ι+ ι−

]∗
= dom ι∗+ ∩ dom ι∗− = D− ∩D+. ❑
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5. Quasi Gelfand triples with Hilbert spaces

In this section we will regard a quasi Gelfand triple (X+,X0,X−), where X+ and
X− (and of course X0) are Hilbert spaces. Maybe also some of these results can
be proven for general quasi Gelfand triple, but we would need a replacement for
Theorem B.4.

For a quasi Gelfand triple (X+,X0,X−) consisting of Hilbert spaces, there exists
a unitary mapping Ψ from X− to X+ (Riesz representation theorem) satisfying

⟨g, f⟩X−,X+
= ⟨Ψg, f⟩X+

and ⟨f, g⟩X+,X− = ⟨Ψ−1f, g⟩X− .

We will refer to this mapping Ψ as the duality map of the quasi Gelfand triple.
Note that we previously regarded the adjoint of ι+ with respect to the dual pairs

(X0,X0) and (X+,X−). The main reason for this choice was, that if X+ is not a
Hilbert space, then the dual pair (X+,X+) is not available, but also sometimes the
adjoint with respect to the dual pair (X+,X−) is more natural.

However, now that X+ is a Hilbert space, the dual pairs (X+,X+) and (X−,X−)
are available and seem reasonable when it comes to calculating adjoints. Hence, if
we have an additional dual pair (Y, Z) and a linear operator A from X+ to Y , then
we have two choices for the adjoint:

A∗Z×X+ : domA∗ ⊆ Z → X+ and A∗Z×X− : domA∗ ⊆ Z → X−,

as defined in Definition 2.2. In order to have a short notation we will denote the
adjoints that are taken w.r.t. the dual pairs (X+,X+) and (X−,X−) by A

∗h (h for
Hilbert space duality) and the adjoints w.r.t. (X+,X−) still by A

∗, i.e.,

A∗h : domA∗h ⊆ Z → X+ and A∗ : domA∗ ⊆ Z → X−.

Clearly, the same goes for mappings, where X+ is the codomain and analogously for
X−. Note that for X0 we regard only the dual pair (X0,X0), therefore we always
take adjoints with respect to this dual pair. In particular for ι+ we have

ι∗h
+ : dom ι∗h

+ ⊆ X0 → X+ and ι∗+ : dom ι∗+ ⊆ X0 → X−.

By Lemma B.3 we have the following relations between the adjoints:

ι∗h
+ = Ψι∗+ and ι∗h

− = Ψ−1ι∗−.

Corollary 5.1. The set D+ ∩ D− is dense in X+ and X− with respect to their
corresponding norms. More precisely dom ι∗+ι+ = ι−1

+ (D+ ∩D−) is dense in X+ and

dom ι∗−ι− = ι−1
− (D+ ∩D−) is dense in X−.

Furthermore, ι−1
+ (D+ ∩D−) is a core of ι+ and ι−1

− (D+ ∩D−) is a core of ι−.

Proof. Applying Theorem B.4 to ι+ yields ι∗h
+ ι+ is self-adjoint. Note that by

Lemma B.3 we have ι∗h
+ = Ψι∗+, where Ψ is the duality map introduced in the

beginning of this section. Hence, dom ι∗h
+ ι+ = dom ι∗+ι+ is dense in X+. By

Lemma 4.4 dom ι∗+ = D−, consequently

dom ι∗+ι+ = ι−1
+ (dom ι∗+ ∩ ran ι+) = ι−1

+ (D− ∩D+) = D+ ∩D−. (4)

Finally, Proposition B.6 and (4) gives that ι−1
+ (D+ ∩D−) is a core of ι+.

An analogous argument for ι− yields D+ ∩D− is dense in X−. ❑

Corollary 5.2. D+ +D− = X0.

Proof. Applying Theorem B.4 to ι+ gives that (IX0 + ι+ι
∗h
+ ) is onto. Hence, for

every x ∈ X0 there exists a gx ∈ dom ι+ι
∗h
+ ⊆ D− such that

x = gx︸︷︷︸
∈D−

+ ι+ι
∗h
+ gx︸ ︷︷ ︸
∈D+

.

Since gx ∈ dom ι+ι
∗h
+ , we have ι∗h

+ gx ∈ D+ and consequently x ∈ D+ +D−. ❑



14 NATHANAEL SKREPEK

Next we will show that we can embed an entire quasi Gelfand triple structure
preservingly into a larger space. We will even give the smallest possible space that
contains the entire quasi Gelfand triple. However, before we start we give a proper
definition of what we mean.

Definition 5.3. Let H be a Hausdorff topological vector space. We say the quasi
Gelfand triple (X+,X0,X−) can be structure preservingly embedded into H, if there
exist linear, injective and continuous mappings

ϕX+
: X+ → H, ϕX0

: X0 → H and ϕX− : X− → H
such that

ϕX+

∣∣
dom ι+

= ϕX0
ι+ and ϕX−

∣∣
dom ι−

= ϕX0
ι−. (5)

Basically the previous definition means that the following diagram commutes.

H

X+ X0 X−

dom ι+ ran ι+ ran ι− dom ι−

ϕX+
ϕX0

ϕX−

id ι+

ι−1
+

id id

ι−1
−

ι− id

Since we identify dom ι+ and ran ι+ with each other and denote it as D+ and the
same for ι−, we can reduce the previous diagram to the following diagram.

H

X+ X0 X−

D+ D−

ϕX+
ϕX0

ϕX−

id id id id

From this point of view the compatibility condition (5) can be seen as

ϕX+
f = ϕX0

f ∀f ∈ D+ and ϕX−g = ϕX0
g ∀g ∈ D−.

Note if (X+,X0,X−) is an “ordinary” Gelfand triple (where ι+ is continuous),
then it is usually denoted by X+ ⊆ X0 ⊆ X−. To be precise these inclusions are
actually identifications via the mappings ι+ and ι−1

− . The continuity and closedness
of ι+ implies dom ι+ = X+ and that ι∗+ is also continuous and everywhere defined.

Since ι∗+ = ι−1
− (Lemma 4.7), we have the following setting:

X+ X0 X−,
ι+ ι−1

−

which suggests that X− contains the entire Gelfand triple. Defining ϕX+
= ι−1

− ι+,

ϕX0
= ι−1

− and ϕX− = idX− justifies that X− contains the Gelfand triple in a
structure preserving manner as defined in Definition 5.3.

For quasi Gelfand triples the construction of a space that covers the entire quasi
Gelfand triple needs a bit more attention.

By Proposition 4.10, D+∩D− with ∥·∥X+∩X− is complete and therefore a Banach
space. Since X+ and X− are Hilbert spaces (in this section) we can define the inner
product

⟨g, f⟩X+∩X− := ⟨g, f⟩X+ + ⟨g, f⟩X−

on D+∩D−. This inner product induces the previous norm ∥·∥X+∩X− . Consequently
D+∩D− is a Hilbert space with ⟨·, ·⟩X+∩X− . For shorter notation we denote D+∩D−
by Z+, the corresponding inner product and norm by ⟨·, ·⟩Z+

and ∥·∥Z+
, respectively.
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Corollary 5.4. Let Z+ = D+ ∩D− be the space defined in the previous paragraph.
Then the triple (Z+,X0,Z ′

+) forms an “ordinary” Gelfand triple. In particular Z ′
+

is isometrically isomorphic to Z−, the completion of X0 w.r.t.

∥h∥Z− := sup
z∈Z+\{0}

|⟨h, z⟩X0
|

∥z∥Z+

.

Proof. By Proposition 4.12 we know that Z+ is dense in X0 and by Proposition 4.10
that the mapping ιZ+

: Z+ → X0, z 7→ z is continuous. Hence, “ordinary” Gelfand
triple theory or Theorem 4.8 gives the assertion. ❑

Theorem 5.5. We can structure preservingly embed the quasi Gelfand triple
(X+,X0,X−) into the space Z ′

+ by the embeddings

ψX+
f = ⟨f, ι−1

− ·⟩X+,X− , ψX0
h = ⟨h, ·⟩X0

and ψX−g = ⟨g, ι−1
+ ·⟩X−,X+

.

Note that by our identifications of D+ and D− we have ι−1
+ z = z and ι−1

− z = z
for z ∈ Z+. However, making this change of spaces visible can sometimes help.
Nevertheless, most of the time this is only additional dead weight, this is why we
will often just write ϕX+

(f)(z) = ⟨f, z⟩X+,X− , etc..
Clearly, since Z ′

+ and Z− are isometrically isomorphic we can also structure
preservingly embed (X+,X0,X−) into Z−. For notational harmony we prefer to use
Z− instead of Z ′

+. However, for our purpose there is no need to strictly distinguish
between them, this is why we will use these symbols as synonyms. Figure 4 illustrates
the meaning of the previous theorem.

Proof. First we have to check that these mappings are well-defined: Let z ∈ Z+,
f ∈ X+, h ∈ X0 and g ∈ X−. Then

|ψX+
(f)(z)| = |⟨f, z⟩X+,X− | ≤ ∥f∥X+

∥z∥X− ≤ ∥f∥X+
∥z∥Z+

,

|ψX0
(h)(z)| = |⟨h, z⟩X0

| ≤ ∥h∥X0
∥z∥X0

≤ ∥h∥X0
∥z∥Z+

,

|ψX−(g)(z)| = |⟨g, z⟩X−,X+
| ≤ ∥g∥X−∥z∥X+

≤ ∥g∥X−∥z∥Z+
,

which implies ψX+
(f), ψX0

(h) and ψX−(g) are in Z ′
+, and ψX+

, ψX0
and ψX− are

continuous. The linearity of ψX+
, ψX0

and ψX− follows from the sesquilinearity

of a dual pairing. If ψX+(f) = 0, then f ⊥ ι−1
− Z+ = ι−1

− (D+ ∩D−) = dom ι∗−ι−.
Since dom ι∗−ι− is dense in X−, we conclude f = 0, which proves ϕX+ is injective.
Analogously, we can show that ψX− is injective. If ψX0

(h) = 0, then h ⊥ Z+.
Since Z+ is dense in X0, h has to be 0, which gives the injectivity of ψX0

. The
compatibility condition (5) follows from

ψX0 ◦ ι+(f)(z) = ⟨ι+f, z⟩X0 = ⟨f, ι∗+z⟩X+,X− = ⟨f, ι−1
− z⟩X+,X− = ψX+(f)(z),

ψX0 ◦ ι−(g)(z) = ⟨ι−g, z⟩X0 = ⟨g, ι∗−z⟩X−,X+ = ⟨g, ι−1
+ z⟩X−,X+ = ψX−(g)(z). ❑

Now since we can always structure preservingly embed a quasi Gelfand triple into
Z− (Z ′

+) we can regard this quasi Gelfand triple as subsets of Z−, see Figure 4a,
and do not have to deal with all this embeddings (most of the time). However, we
will not get completely rid of these embeddings, as they are sometimes helpful, but
we can always regard them as identity mappings.

Lemma 5.6. Z− = X+ + X− and

∥h∥Z− = inf
f+g=h

f∈X+,g∈X−

√
∥f∥2X+

+ ∥g∥2X−
.

Proof. Note that Z+ is a Hilbert space with ⟨z1, z2⟩Z+ = ⟨z1, z2⟩X+ + ⟨z1, z2⟩X− .
Hence, there is a duality map Φ from Z− to Z+ and we can write

⟨h, z⟩Z−,Z+
= ⟨Φh, z⟩Z+

= ⟨Φh, z⟩X+
+ ⟨Φh, z⟩X− .
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X+ X−

X0

D+ D−

D+∩D−

= Z+

Z−

(a) Venn diagram

Z−

X+ X0 X−

D+ D−

Z+

(b) Commutative diagram

Figure 4. quasi Gelfand triple embedded in Z−

Furthermore, with the duality map Ψ from X− to X+ we have

⟨h, z⟩Z−,Z+ = ⟨Ψ−1Φh, z⟩X−,X+ + ⟨ΨΦh, z⟩X+,X−

and h = Ψ−1Φh+ΨΦh in Z−, where Ψ−1Φh ∈ X− and ΨΦh ∈ X+.
Let h ∈ Z−. Then for every f ∈ X+, g ∈ X− that satisfy h = f + g in Z− we

have

|⟨h, z⟩Z−,Z+ | = |⟨f, z⟩X+,X− + ⟨g, z⟩X−,X+ | ≤ |⟨f, z⟩X+,X− |+ |⟨g, z⟩X−,X+ |
≤ ∥f∥X+

∥z∥X− + ∥g∥X−∥z∥X+

≤
√

∥f∥2X+
+ ∥g∥2X−

√
∥z∥2X−

+ ∥z∥2X+

=
√

∥f∥2X+
+ ∥g∥2X−

∥z∥Z+
,

which implies ∥h∥Z− ≤ infh=f+g

√
∥f∥2X+

+ ∥g∥2X−
. On the other hand

∥h∥2Z−
= ∥Φh∥2Z+

= ∥Φh∥2X+
+ ∥Φh∥2X−

= ∥Ψ−1Φh∥2X−
+ ∥ΨΦh∥2X+

finishes the proof. ❑

The next result reinforces Definition 4.3.

Proposition 5.7. The intersection X+ ∩ X0 in Z− equals D+, i.e., ranψX+ ∩
ranψX0 = ran(ψX0 ◦ ι+), and the intersection X− ∩ X0 in Z− equals D−, i.e.,
ranψX− ∩ ranψX0

= ran(ψX0
◦ ι−).

Proof. Let h ∈ X+ ∩ X0 ⊆ Z−, i.e., it exists an f ∈ X+ and a k ∈ X0 such that

⟨h, z⟩Z−,Z+ = ⟨f, ι−1
− z⟩X+,X− = ⟨k, z⟩X0 for all z ∈ Z+ = D+ ∩D−.

We define x = ι−1
− z, which leads to

⟨f, x⟩X+,X− = ⟨k, ι−x⟩X0 for all x ∈ ι−1
− (D+ ∩D−).

Since ι−1
− (D+ ∩D−) is a core of ι− (Corollary 5.1), this equation is also true for all

x ∈ dom ι−. Moreover, this implies f = ι∗−k and k ∈ dom ι∗− = D+. By ι∗− = ι−1
+

we obtain ι+f = k ∈ D+ and

⟨h, z⟩Z−,Z+
= ⟨f, ι−1

− z⟩X+,X− = ⟨k, z⟩X0
= ⟨ι+f, z⟩X0

,
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which gives h = f = k = ι+f in Z− and h ∈ D+.
The same steps can also be done for X−. ❑

Theorem 5.8. The intersection X+ ∩ X− in Z− is D+ ∩D−(= Z+), i.e.,

ranψX+ ∩ ranψX− = ran(ψX0 ◦ ι+) ∩ ran(ψX0 ◦ ι−) = ψX0(Z+).

This means that area of X+ ∩ X− in Figure 4 outside of X0 is actually empty.

Proof. Let h ∈ X+ ∩ X− ⊆ Z−, i.e., it exists an f ∈ X+ and a g ∈ X− such that

⟨h, z⟩Z−,Z+ = ⟨f, ι−1
− z⟩X+,X− = ⟨g, ι−1

+ z⟩X−,X+ for all z ∈ D+ ∩D−.

We define x := ι−1
+ z, which leads to z = ι+x. Since z ∈ dom ι−1

− , we have x ∈
dom ι−1

− ι+. Recall that ι−1
− = ι∗+ and ι−1

+ Z+ = ι−1
+ (D+ ∩ D−) = dom ι∗+ι+ (see

Lemma 4.7 and Corollary 5.1). Hence,

⟨f, ι∗+ι+x⟩X+,X− = ⟨g, x⟩X−,X+ for all x ∈ dom ι∗+ι+,

which implies (ι∗+ι+)
∗f = g and f ∈ dom(ι∗+ι+)

∗. By Proposition B.6 (ι∗+ι+)
∗ = ι∗+ι+

and therefore f ∈ dom ι∗+ι+ and in particular, ι+f ∈ ι+(dom ι∗+ι+) = D+ ∩ D−.

Note that again by ι−1
− = ι∗+ we have ι−1

− ι+f = g. Thus, g ∈ dom ι− and ι+f = ι−g.
This gives

⟨h, z⟩Z−,Z+
= ⟨ι+f, z⟩X0

= ⟨ι−g, z⟩X0
.

Therefore, h = f = g = ι+f = ι−g in Z−. ❑

Corollary 5.9. For f ∈ X+ and g ∈ X− we have

∥f + g∥Z− = inf
z∈Z+

√
∥f + z∥2X+

+ ∥g − z∥2X−
.

Proof. By Lemma 5.6 we have

∥f + g∥Z− = inf
f̃+g̃=f+g

f̃∈X+,g̃∈X−

√
∥f̃∥2X+

+ ∥g̃∥2X−

Note that f + g = f̃ + g̃ implies

z := f − f̃︸ ︷︷ ︸
∈X+

= − (g − g̃)︸ ︷︷ ︸
∈X−

∈ X+ ∩ X−.

We can write f̃ = f − z and g̃ = f + z and by Theorem 5.8 we have z ∈ Z+.
Consequently,

∥f + g∥ = inf
z∈Z+

√
∥f − z∥2X+

+ ∥g + z∥2X−
= inf

z∈Z+

√
∥f + z∥2X+

+ ∥g − z∥2X−
. ❑

The space Z− is the smallest space where we can embed the quasi Gelfand triple
structure preservingly. The following theorem makes this statement precise.

Theorem 5.10. Let H be a Hausdorff topological vector space such that we can
structure preservingly embed the quasi Gelfand triple (X+,X0,X−) into H and let
ϕX+

, ϕX0
and ϕX− denote the embeddings. Then also Z− can be continuously

embedded into H by a mapping ϕZ− , such that

ϕZ− ◦ ψX+
= ϕX+

, ϕZ− ◦ ψX0
= ϕX0

and ϕZ− ◦ ψX− = ϕX− ,



18 NATHANAEL SKREPEK

i.e., the following diagram commutes.

H

Z−

X+ X0 X−

D+ D−

Z+

Proof. Recall that we can assume that X+,X0,X− ⊆ Z− and ψX+
f = f , ψX0

h = h,
and ψX−g = g, by simply replacing the quasi Gelfand triple (X+,X0,X−) by
(ψX+(X+), ψX0(X0), ψX−(X−)), see Figure 4.

For convenience we define X̂+ = ϕX+(X+), X̂0 = ϕX0(X0) and X̂− = ϕX−(X−)

with ∥f∥X̂+
= ∥ϕ−1

X+
f∥X+ , ∥h∥X̂0

= ∥ϕ−1
X0
h∥X0 and ∥g∥X̂−

= ∥ϕ−1
X−
g∥X− .

We will show as a first step that we can endow X̂+ + X̂− in H with ∥h∥X̂++X̂−
=

inff+g=h

√
∥f∥2

X̂+
+ ∥g∥2

X̂−
such that the corresponding topology of ∥·∥X̂++X̂−

is

finer than the topology TH of H (i.e., whenever (hn)n∈N converges w.r.t. ∥·∥X̂++X̂−
,

it also converges w.r.t. TH). Note that we can alternatively write the norm as

∥f + g∥X̂++X̂−
= inf

{√
∥f̃∥2

X̂+
+ ∥g̃∥2

X̂−

∣∣∣ f̃ + g̃ = f + g
}

= inf
{√

∥f + z∥2
X̂+

+ ∥g − z∥2
X̂−

∣∣∣ z ∈ X+ ∩ X−

}
.

Moreover, the mapping

Λ:

{
X+ ×X− → H,[

f
g

]
7→ ϕX+

f + ϕX−g,

is continuous as composition of the continuous embeddings into H and the con-
tinuous addition in H. Hence, kerΛ is closed in X+ × X− and the quotient space
X+ ×X−/kerΛ is a Hilbert space and is isometrically isomorphic to X̂+ + X̂− with
∥·∥X̂++X̂−

. The quotient mapping Λ/kerΛ : X+ ×X−/kerΛ → H is injective and

continuous, which implies that topology of ∥·∥X̂++X̂−
is finer than the trace topology

of TH on X̂+ + X̂−.

We can regard Ẑ+ := ϕX0(Z+) ⊆ X̂0 ⊆ H and endow this space with

∥z∥Ẑ+
:=

√
∥z∥2

X̂+
+ ∥z∥2

X̂−
= ∥ϕ−1

X0
z∥Z+

for z ∈ Ẑ+.

Furthermore, we can define a new norm on X0 by ∥h∥Ẑ−
:= supz∈Ẑ+\{0}

|⟨h,z⟩|X̂0

∥z∥Ẑ+

.

Note that every h ∈ X0 can be written as h = f + g, where f ∈ D+ and g ∈ D−,

see Corollary 5.2. Hence, also every h ∈ X̂0 can be written as h = f + g, where
f ∈ ϕX0

(D+) = ϕX+
(D+) ⊆ X̂+ ∩ X̂0 and g ∈ ϕX0

(D−) = ϕX−(D−) ⊆ X̂0 ∩ X̂−. We
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know by Corollary 5.9 for every f + g ∈ X̂0 (f ∈ ϕX0
(D+), g ∈ ϕX0

(D−)) that

∥f + g∥Ẑ−
= ∥ϕ−1

X0
(f + g)∥Z− = inf

z∈Z+

√
∥ϕ−1

X0
(f) + z∥2X+

+ ∥ϕ−1
X0

(g)− z∥2X−

= inf
z∈Ẑ+

√
∥ϕ−1

X0
(f) + ϕ−1

X0
(z)︸ ︷︷ ︸

=ϕ−1
X+

(f+z)

∥2X+
+ ∥ϕ−1

X0
(g)− ϕ−1

X0
(z)︸ ︷︷ ︸

=ϕ−1
X−

(g−z)

∥2X−

= inf
z∈Ẑ+

√
∥f + z∥2

X̂+
+ ∥g − z∥2

X̂−

≥ inf
z∈X+∩X−

√
∥f + z∥2

X̂+
+ ∥g − z∥2

X̂−
= ∥f + g∥X̂++X̂−

,

because Ẑ+ ⊆ X̂+ ∩ X̂−. Hence, the completion of X̂0 w.r.t. ∥·∥Ẑ−
can also be

continuously embedded into X̂+ + X̂−, because X̂+ + X̂− is complete, and therefore
also into H. In particular the mapping (ψX0 does not do anything by assumption)

ϕX0
◦ ψ−1

X0
: ψX0

(X0) ⊆ Z− → H

is continuous w.r.t. the ∥·∥Z− topology on ψX0(X0) and TH on H and injective. By
the density of X0 in Z− we can continuously extend this mapping, denoted by

ϕZ− := ϕX0
◦ ψ−1

X0
: Z− → H.

By construction we already have ϕZ− ◦ ψX0
= ϕX0

. Note that for z ∈ Z+ we have

z = ψX+
z = ψX0

z = ψX−z and ϕX+
z = ϕX0

z = ϕX−z.

Now for f ∈ X+ there exists a sequence (zn)n∈N in Z+ that converges to f w.r.t.
∥·∥X+

. Hence, the continuity of ϕZ− , ψX+
and ϕX+

gives

ϕZ− ◦ ψX+
f = lim

n→∞
ϕZ− ◦ ψX+

zn = lim
n→∞

ϕZ− ◦ ψX0
zn

= lim
n→∞

ϕX0zn = lim
n→∞

ϕX+zn = ϕX+f.

Analogously, we can show ϕZ− ◦ ψX− = ϕX− . ❑

Corollary 5.11. Let H be a topological Hausdorff vector space such that we can
structure preservingly embed the quasi Gelfand triple (X+,X0,X−) into H. Then
X+ ∩ X− in H equals D+ ∩D−, i.e., ϕX+

(X+) ∩ ϕX−(X−) = ϕX0
(D+ ∩D−).

Proof. By Theorem 5.10 we can also embed Z− into H such that

X+

X−
⊆ Z− ⊆ H.

Hence, X+ ∩X− in H is the same as X+ ∩X− in Z−, which equals, by Theorem 5.8,
D+ ∩D− = Z+. ❑

6. Gram operators

Every quasi Gelfand triple (X+,X0,X−) is fully determined (up to isomorphic
identifications) by X0, ran ι+ and ∥·∥X+

on ran ι+ (or ran ι− with ∥·∥X−). However,
in the Hilbert space case (X+ is a Hilbert space) we can even encode the entire
information of a quasi Gelfand triple in a single (so called Gram) operator G on
X0, that is self-adjoint, positive and injective. This means that ⟨Gf, g⟩X0

defines
a new inner product on X0, which gives rise to ⟨f, g⟩X+ . In particular, we will see

that D+ = domG1/2 and ⟨G1/2f,G1/2g⟩ = ⟨f, g⟩X+
.
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Definition 6.1. Let (X+,X0,X−) be a quasi Gelfand triple of Hilbert spaces. Then
we define the Gram operator G+ : domG+ ⊆ X0 → X0 of the quasi Gelfand triple
by

G+ := (ι−1
+ )∗hι−1

+ = (ι+ι
∗h
+ )−1,

where here the adjoint is taken w.r.t. the dual pairs (X0,X0) and (X+,X+), i.e.,

(ι−1
+ )∗h = (ι−1

+ )∗X+×X0 and ι∗h
+ = ι

∗X0×X+

+ .

By Theorem B.4 G+ is self-adjoint and positive (not necessarily strictly positive
(coercive)). Moreover, by the functional calculus for unbounded self-adjoint operators

on Hilbert spaces there exists a root G
1/2
+ of G+, which is also self-adjoint and positive.

Clearly, we can do the same for ι− and define G− := (ι−1
− )∗hι−1

− , where again

here the adjoint is taken w.r.t. the dual pairs (X0,X0) and (X−,X−), i.e., (ι
−1
− )∗h =

(ι−1
− )∗X−×X0 . In fact we will see that G− = G−1

+ .

Theorem 6.2. Let (X+,X0,X−) be a quasi Gelfand triple of Hilbert spaces and G+

its Gram operator. Then ran ι+ = domG
1/2
+ and

⟨f, g⟩X+
= ⟨G1/2

+ f,G
1/2
+ g⟩X0

for all f, g ∈ domG
1/2
+ .

In particular, ∥f∥X+
= ∥G1/2

+ f∥X0
.

Proof. Note that domG+ = dom(ι−1
+ )∗hι−1

+ is a core of ι−1
+ . This implies that for

every f ∈ ran ι+ there exists a sequence (fn)n∈N in domG+ such that fn → f w.r.t.
∥·∥X0

and ι−1
+ fn → ι−1

+ f w.r.t. ∥·∥X+
. In order words domG+ is dense in D+ w.r.t.

∥·∥X+∩X0
. For f, g ∈ domG+ ⊆ domG

1/2
+ we have

⟨ι−1
+ f, ι−1

+ g⟩X+ =
〈
(ι−1

+ )∗hι−1
+ f, g

〉
X+

= ⟨G+f, g⟩X0 = ⟨G1/2
+ f,G

1/2
+ g⟩X0 (6)

and in particular we have ∥ι−1
+ f∥X+

= ∥G1/2
+ f∥X0

for all f ∈ domG+.
For every f ∈ ran ι+ there exists a sequence (fn)n∈N in domG+ that converges

to f w.r.t. ∥·∥X+∩X0 . Hence, we have

∥G1/2
+ fn∥X0 = ∥ι−1

+ fn∥X+ → ∥ι−1
+ f∥X+

and in particular (G
1/2
+ fn)n∈N is a bounded sequence in X0. Therefore, there exists

a weakly convergent subsequence and by taking a convex combination Lemma B.2
we end up with a sequence (f̃n)n∈N that still converges to f w.r.t. ∥·∥X+∩X0 and

additionally (G
1/2
+ f̃n)n∈N converges to some f̃ ∈ X0. By the closedness of G

1/2
+ the

limit f̃ has to coincide with f . This implies ran ι+ ⊆ domG+ and we can extend (6)
by continuity to

⟨ι−1
+ f, ι−1

+ g⟩X+
=

〈
G

1/2
+ f,G

1/2
+ g

〉
X0

for all f, g ∈ ran ι+.

Note that domG+ = dom(G
1/2
+ )∗G

1/2
+ is a core of G

1/2
+ . Now we will the repeat

the previous step with switched roles of G
1/2
+ and ι−1

+ : For every f ∈ domG
1/2
+ there

exists a sequence (fn)n∈N in domG+ such that fn → f and G
1/2
+ fn → G

1/2
+ f both

w.r.t. ∥·∥X+ . This gives

∥ι−1
+ fn∥X+ = ∥G1/2

+ fn∥X0 → ∥G1/2
+ f∥X0 .

Now (ι−1
+ fn)n∈N is a bounded sequence in X+. Therefore there exists a weakly

convergent subsequence. Moreover a convex combination of this subsequence con-
verges even w.r.t ∥·∥X+

. In total we have a sequence (f̃n)n∈N such that f̃n → f ,

G
1/2
+ f̃n → G

1/2
+ f w.r.t. ∥·∥X0 and ι−1

+ f̃n → f̃ w.r.t. ∥·∥X+ for an f̃ ∈ X+. By the

closedness of ι+ we conclude f̃ = ι−1
+ f and in turn domG

1/2
+ ⊆ ran ι+, which

completes the proof. ❑
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Proposition 6.3. Let (X+,X0,X−) be a quasi Gelfand triple of Hilbert spaces.
Then

G− = G−1
+ .

Proof. Let Ψ: X− → X+ denote the duality mapping between X− and X+. Recall
G− = (ι−1

− )∗hι−1
− = (ι−ι

∗h
− )−1,

ι∗h
+ = Ψι∗+ = Ψι−1

− and ι∗h
− = Ψ−1ι∗− = Ψ−1ι−1

+ .

Hence, we have

G−1
− = ι−ι

∗h
− = ι−Ψ

−1ι−1
+ = (Ψι−1

− )−1ι−1
+ = (ι∗h

+ )−1ι−1
+ = (ι−1

+ )∗hι−1
+ = G+. ❑

Corollary 6.4. Let (X+,X0,X−) be a quasi Gelfand triple of Hilbert spaces. Then

ran ι− = domG
1/2
− = domG

−1/2
+ = ranG

1/2
+ .

So far we have shown that there is a self-adjoint positive and injective operator
with dense range for every quasi Gelfand triple. Now the next theorem will show that
also the reverse is true. That is, every self-adjoint positive and injective operator G
with dense range establishes a quasi Gelfand triple whose Gram operator is G.

Theorem 6.5. Let X0 be a Hilbert space and G a self-adjoint positive and injective
operator on X0 with dense range. Then there exists a quasi Gelfand triple whose
Gram operator is G. In particular, if we denote the corresponding quasi Gelfand
triple by (X+,X0,X−) we have

ran ι+ = domG
1/2 and ran ι− = ranG

1/2.

Moreover, G coincides with the Gram operator G+ of (X+,X0 X−), i.e., G = G+.

Note that dense range and injectivity are equivalent for a self-adjoint operator.
Moreover, the density of the range (or the injectivity of the operator) is not really a
necessity as we can always split

X0 = kerG⊕ ranG.

Hence, we just replace X0 with ranG and G with G
∣∣
ranG

.

Proof. We define ⟨f, g⟩X+
:= ⟨G1/2f,G1/2g⟩X0

and the corresponding norm ∥f∥X+
=

∥G1/2f∥X0
for f, g ∈ domG1/2. Since G1/2 is positive ⟨·, ·⟩X+

is really an inner

product and ∥·∥X+
a norm. Hence, domG1/2 with ⟨·, ·⟩X+

is a pre-Hilbert space and
its completion X+ is a Hilbert space. We define

ι+ :

{
domG1/2 ⊆ X+ → X0,

f 7→ f.

Let
([

fn
fn

])
n∈N

be a sequence in ι+ that converges to
[ g
f

]
∈ X+ × X0. Then([

fn

G
1/2fn

])
n∈N

is a Cauchy sequence in X0 × X0, and therefore convergent. The

closedness of G1/2 implies f ∈ domG1/2 = D+ and
[

fn

G
1/2fn

]
→

[
f

G
1/2f

]
. This leads

to ∥fn − f∥X+
= ∥G1/2(fn − f)∥X0

→ 0 and consequently f = g. Now we can apply
Theorem 4.8 and see that there is a space X− such that (X+,X0,X−) forms a quasi
Gelfand triple.

Now we have for f, g ∈ domG1/2 = ran ι+ = domG
1/2
+

⟨G1/2f,G
1/2g⟩X0

= ⟨f, g⟩X+
= ⟨G1/2

+ f,G
1/2
+ g⟩X0

.

Note that domG ⊆ domG1/2 and therefore for f ∈ domG we have

⟨Gf, g⟩X0 = ⟨G1/2
+ f,G

1/2
+ g⟩X0 ,
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which implies G
1/2
+ f ∈ domG

1/2
+ and G

1/2
+ G

1/2
+ f = Gf . Hence G ⊆ G+. The same

argument with G and G+ switched gives G+ ⊆ G and thus G = G+.
By Proposition 6.3 we have G− = G−1

+ = G−1 and therefore, by Theorem 6.2 for
G−,

ran ι− = domG
1/2
− = ranG

−1/2
− = ranG

1/2. ❑

There is a bijection between the set of quasi Gelfand triples with pivot space
X0 and all self-adjoint positive and injective operators with dense range on X0, see
Figure 5.

(X+,X0,X−) G

X+, ι+ D+, ⟨·, ·⟩X+

(ι+ι∗+)−1

domG
1/2,

⟨G1/2·,G1/2·⟩X0

Theorem 4.8
completion

Figure 5. Illustration of Theorem 6.5

Since all infinite dimensional separable Hilbert spaces are isomorphic, it is clear
that there exists a dual pairing ⟨·, ·⟩X+,X0

such that also (X+,X0) is a complete dual
pair. However, we can explicitly write this mapping by

⟨f, g⟩X+,X0
=

〈
G

1/2
+ ι+f, g

〉
X0

=
〈
f,G

1/2
+ ι+

−1

g
〉
X+

,

where G
1/2
+ ι+ is the continuous extension of the isometric mapping G

1/2
+ ι+ : dom ι+ ⊆

X+ → X0.

6.1. Decomposition into two “ordinary” Gelfand triples. In this section we
will see that every quasi Gelfand triple of Hilbert spaces can be decomposed into
two “ordinary” Gelfand triple. This means for a quasi Gelfand triple (X+,X0,X−)
there exist “ordinary” Gelfand triples X 1

+ ⊆ X 1
0 ⊆ X 1

− and X 2
+ ⊆ X 2

0 ⊆ X 2
− such

that
X+ = X 1

+ ⊕X 2
−, X0 = X 1

0 ⊕X 2
0 and X− = X 1

− ⊕X 2
+.

Theorem 6.6. Let (X+,X0,X−) be a quasi Gelfand triple of Hilbert spaces. Then
there exist two “ordinary” Gelfand triple X 1

+ ⊆ X 1
0 ⊆ X 1

− and X 2
+ ⊆ X 2

0 ⊆ X 2
− such

that
X+ = X 1

+ ⊕X 2
−, X0 = X 1

0 ⊕X 2
0 and X− = X 1

− ⊕X 2
+.

This means that every quasi Gelfand triple (of Hilbert spaces) is the result of
two “ordinary” Gelfand triple that are cross-wise composed.

Proof. We will show the proof in several steps:

1. Step: Decomposition of X0. Let G+ be the Gram operator of the quasi Gelfand

triple and G
1/2
+ its positive square root. Then there exists a spectral measure E for

G
1/2
+ such that G

1/2
+ =

∫
R+
λ dE(λ). We can decompose X0 into

X0 = ranE((1,∞))︸ ︷︷ ︸
=:X 1

0

⊕ ranE((0, 1])︸ ︷︷ ︸
=:X 2

0

.
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By spectral theory X 2
0 = ranE((0, 1]) ⊆ domG

1/2
+ = ran ι+ = D+, as (0, 1] is a

bounded set. We can write every f ∈ D+ as

f = E((1,∞))f + E((0, 1])f

and since E((0, 1])f ∈ D+, we conclude that also E((1,∞))f ∈ D+. For an
arbitrary f ∈ X 1

0 ⊆ X0 there exists a sequence (fn)n∈N in D+ such that fn → f
w.r.t. ∥·∥X0

. Since also (E((1,∞))fn)n∈N converges to E((1,∞))f = f by continuity,
and E((1,∞))f ∈ D+, we conclude that X 1

0 ∩D+ is dense in X 1
0 (w.r.t. ∥·∥X0

). On
the other hand, X 2

0 ⊆ D+.

2. Step: Decomposition of X+. For f ∈ D+ we have

∥E((0, 1])f∥2X+
= ∥G1/2

+ E((0, 1])f∥2X0

=

∫
(0,1]

|λ|2 dEf,f ≤
∫
(0,∞)

|λ|2 dEf,f = ∥f∥2X+
,

and

∥E((1,∞))f∥2X+
= ∥G1/2

+ E((1,∞))f∥2X0

=

∫
(1,∞)

|λ|2 dEf,f ≤
∫
(0,∞)

|λ|2 dEf,f = ∥f∥2X+
.

Hence, the spectral projections E((0, 1]) and E((1,∞)) are also continuous on D+

with respect to ∥·∥X+
and we can extend these projections continuously on X+.

Note that for f ∈ D+ we have G1/2E(∆)f = E(∆)G1/2 for all ∆ in the Borel sets of
R. Hence, we have for f, g ∈ D+

⟨E((0, 1])f,E((1,∞))g⟩X+ = ⟨G1/2
+ E((0, 1])f,G

1/2
+ E((1,∞))g⟩X0

= ⟨G+E((1,∞))E((0, 1])︸ ︷︷ ︸
=0

f, g⟩X0
= 0,

which implies that the extensions of E((0, 1])
∣∣
D+

and E((1,∞))
∣∣
D+

are orthogonal

projections on X+. Moreover, for f ∈ X+ there exists a sequence (fn)n∈N in D+

that converges to f w.r.t. ∥·∥X+ . By the continuity of projections we conclude that
(E((0, 1])fn)n∈N and (E((1,∞))fn)n∈N converges and therefore

f = lim
n→∞

fn = lim
n→∞

E((0, 1])fn + E((1,∞))fn

= lim
n→∞

E((0, 1])fn + lim
n→∞

E((1,∞))fn.

This leads to: the extensions of these projections are also complementary. We
denote these extensions by E((0, 1])+ and E((1,∞))+ and we have

X+ = ranE((1,∞))+︸ ︷︷ ︸
=:X 1

+

⊕ ranE((0, 1])+︸ ︷︷ ︸
=:X 2

−

.

3. Step: Relationship between the decompositions of X0 and X+. Note that E((1,∞))+D+ =
E((1,∞))D+ = X 1

0 ∩D+. Furthermore, for f ∈ X 1
0 ∩D+ we have

∥f∥2X+
= ∥E((1,∞))f∥2X+

= ∥G1/2
+ E((1,∞))f∥2X0

=

∫
(1,∞)

|λ|2 dEf,f ≥ inf
λ∈(1,∞)

|λ|2∥f∥2X0
≥ ∥f∥2X0

. (7)

Now for f ∈ X 1
+ there exists a sequence (fn)n∈N in D+ that converges to f w.r.t.

∥·∥X+
and therefore also (f̃n)n∈N = (E((1,∞))+fn)n∈N converges to f w.r.t. ∥·∥X+

.
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By (7) we have

∥f̃n − f̃m∥X0
≤ ∥f̃n − f̃m∥X+

→ 0,

which implies that (f̃n)n∈N is a Cauchy sequence in X 1
0 (w.r.t. ∥·∥X0). By the

closedness of ι+ the limit of this sequence (w.r.t. ∥·∥X0
) has to coincide with f .

Hence, X 1
+ = X 1

0 ∩D+ and the restricted embedding ι+
∣∣
X 1

+

: X 1
+ → X 1

0 is continuous.

On the other hand, since X 2
0 ⊆ D+ we automatically have X 2

0 ⊆ X 2
−, by con-

struction. Furthermore, for f ∈ X 2
0 we have

∥f∥2X+
= ∥E((0, 1])f∥2X+

= ∥G1/2
+ E((0, 1])f∥2X0

=

∫
(0,1]

|λ|2 dEf,f ≤ sup
λ∈(0,1]

|λ|2∥f∥2X0
≤ ∥f∥2X0

. (8)

This implies that the inverse embedding ι−1
+ restricted to X 2

0 is continuous, i.e.,

ι−1
+

∣∣
X 2

0
: X 2

0 → X 2
− is continuous. Hence, we have

X 2
0 ⊆ X 2

− and X 1
+ ⊆ X 1

0

densely with continuous embeddings

4. Step: Decomposition of X−. Note that for g ∈ D− we have

∥g∥X− = ∥G1/2
− g∥X0

= ∥G−1/2
+ g∥X0

and additionally by the rules for the spectral calculus we have

G
1/2
− = G

−1/2
+ =

∫
(0,∞)

1

λ
dE.

Hence, the exact same construction as in the second step (replace X+ by X−, D+

by D−, G+ by G− and |λ| by | 1λ |) gives the decomposition

X− = ranE((1,∞))−︸ ︷︷ ︸
=:X 1

−

⊕ ranE((0, 1])−︸ ︷︷ ︸
=:X 2

+

.

5. Step: Relation ship between the decompositions of X0 and X−. Again repeating
the arguments of the third step. In particular, for g ∈ D− we have

∥E((0, 1])g∥2X−
= ∥G1/2

− E((0, 1])g∥2X0

=

∫
(0,1]

∣∣∣∣ 1λ
∣∣∣∣2 dEg,g ≥ inf

λ∈(0,1]

∣∣∣∣ 1λ
∣∣∣∣2∥g∥2X0

= ∥g∥2X0

and

∥E((1,∞))g∥2X−
= ∥G1/2

− E((1,∞))g∥2X0

=

∫
(1,∞)

∣∣∣∣ 1λ
∣∣∣∣2 dEg,g ≤ inf

λ∈(1,∞)

∣∣∣∣ 1λ
∣∣∣∣2∥g∥2X0

= ∥g∥2X0
.

This implies ι−
∣∣
X 2

+

: X 2
+ → X 2

0 and ι−1
−

∣∣
X 1

0
: X 1

0 → X 1
− are continuous. In particular,

we have

X 2
+ ⊆ X 2

0 and X 1
0 ⊆ X 1

−

densely with continuous embeddings.
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6. Step: Dualities. By Hahn-Banach we can identify (X 2
−)

′ with X ′
+

∣∣
X 2

−
. Moreover,

for f ∈ X+ and g ∈ X− there exist sequences (fn)n∈N in D+ and (gn)n∈N in D−
such that fn → f w.r.t. ∥·∥X+ and gn → g w.r.t. ∥·∥X− . Hence,

⟨E((0, 1])+f,E((1,∞))−g⟩X+,X− = lim
n→∞

⟨E((0, 1])+fn, E((1,∞))−gn⟩X+,X−

= lim
n→∞

⟨E((0, 1])fn, E((1,∞))gn⟩X0
= 0.

Clearly, we also have ⟨E((1,∞))+f,E((0, 1])−g⟩X+,X− = 0. For ϕ ∈ (X 2
−)

′ there
exists a g ∈ X− such that

ϕ(f) = ⟨g, f⟩X−,X+
= ⟨E((0, 1])−g, f⟩X−,X+

+ ⟨E((1,∞))−g, f⟩X−,X+︸ ︷︷ ︸
=0

∀f ∈ X 2
−.

Moreover,

∥ϕ∥(X 2
−)′ = sup

f∈X 2
−\{0}

|ϕ(f)|
∥f∥X+

= sup
f∈X 2

−\{0}

|⟨E((0, 1])−g, f⟩X−,X+
|

∥f∥X+

= sup
f∈X+\{0}

|⟨E((0, 1])−g, f⟩X−,X+ |
∥f∥X+

= ∥E((0, 1])−g∥X−

On the other hand, if ⟨E((0, 1])−g, f⟩X−,X+ = 0 for all f ∈ X 2
−, then we automatically

have ⟨E((0, 1])−g, f⟩X−,X+
= 0 for all f ∈ X+ and therefore E((0, 1])−g = 0. In

conclusion (X 2
−,X 2

+) is a complete dual pair and (X 2
−,X 2

0 ,X 2
+) is a quasi Gelfand

triple with the embeddings ι+
∣∣
X 2

−
and ι−

∣∣
X 2

+

. Moreover, since ι−
∣∣
X 2

+

is continuous,

it is even an “ordinary” Gelfand triple (X 2
+ ⊆ X 2

0 ⊆ X 2
−).

We can show completely analogously that also (X 1
+,X 1

0 ,X 1
−) is an “ordinary”

Gelfand triple (X 1
+ ⊆ X 1

0 ⊆ X 1
−). ❑

Note that this decomposition is not unique as we could have split the space X0 by
any two subspaces ranE(∆) and ranE(∆∁), where (0, ϵ) ⊆ ∆ ⊆ R+ is a bounded
non-empty Borel set for any ϵ > 0.

Finally, we end with two conjectures

Conjecture 6.7 (weak). Every pre-quasi Gelfand triple of Hilbert spaces is a quasi
Gelfand triple.

Conjecture 6.8 (strong). Every pre-quasi Gelfand triple is a quasi Gelfand triple.

At least the weak conjecture seems to be true, but all attempts failed so far.
In fact Theorem 5.10 and Theorem 6.6 are the result of failed attempts to prove
the weak conjecture. The strong conjecture seems much more difficult, as a lot of
Hilbert space theory is unavailable.

A positive answer to (at least) the weak conjecture would automatically answer
the question whether the weak and strong definition of boundary trace operators
for differential operators coincide.

Conclusion

We have introduces a generalization of Gelfand triple that does not need con-
tinuous embeddings. This was done by replacing the continuity of the embeddings
by closedness. We showed that D+ ∩D−, the set that is in the intersection of the
quasi Gelfand triple, is dense in the pivot space X0.

If we regard quasi Gelfand triples of Hilbert spaces, then we can show that
D+ ∩ D− is also dense in X+ and X− w.r.t. their norms. Furthermore, we have
shown that there exists a smallest space were we can embed the entire quasi Gelfand
triple structure preservingly.
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Finally, we have shown that every quasi Gelfand triple is associated to a Gram
operator and the other way round. This led us to a decomposition of the quasi
Gelfand triple into two “ordinary” Gelfand triples.

We ended with the weak and strong version of the conjecture that every pre-quasi
Gelfand triple is in fact already a quasi Gelfand triple.

One application that we did not cover, that is still worth mentioning: Quasi
Gelfand triples can be used to properly define boundary spaces and characterizing
suitable boundary conditions for partial differential equations that lead to existence
and uniqueness of solutions, see [10].

Appendix A. Comparism to similar concepts

In this section we want to introduce the notions triplets of spaces and triples of
closely embedded Hilbert spaces and compare them to quasi Gelfand triples. We will
show that all these notions coincide, i.e.,

(X+,X0,X−) is a quasi Gelfand triple

⇔ (X+,X0,X−) is a triplet of spaces

⇔ (X+,X0,X−) is a triple of closely embedded Hilbert spaces.

In [6] they investigated the equivalence between triplets of spaces and triples of
closely embedded Hilbert spaces and gave conditions for their equivalence. Suprisingly,
they did not realize that no conditions are needed.

First we state the original definition of triplets of spaces, which includes some
implicit assumptions on how to understand intersections of different Hilbert spaces
that are not embedded in a common space.

Definition A.1 (Triplets of spaces (original)). Let X+, X0, X− be three Hilbert
spaces. We say (X+,X0,X−) is a triplet of spaces, if the following assertions hold.

(a) D := X+ ∩ X0 ∩ X− is dense in each of these spaces.

(b) The sesquilinear form B(g, f) := ⟨g, f⟩X0
admits the estimate

|B(g, f)| ≤ ∥g∥X−∥f∥X+
for all g, f ∈ D.

We denote the continuous extension of B to X− ×X+ still by B.

(c) For every h ∈ X+ there exists a unique gh ∈ X− such that ⟨h, f⟩X+ =
B(gh, f)X0

for all f ∈ X+.

However, in order to avoid misinterpretation of the meaning of the intersections
in the previous definition, we introduce the following clarification.

Definition A.2 (Triplets of spaces (clarified)). Let X+, X0, X− be three Hilbert
spaces. We say (X+,X0,X−) is a triplet of spaces, if there exist mappings

k+ : dom k+ ⊆ X+ → X0 and k− : dom k− ⊆ X− → X0

linear and injective such that the following assertions hold.

(tos1) X+ ∩ X0 ∩ X− is dense in each of these spaces, i.e.,

D := ran k+ ∩ ran k− is dense in X0,

k−1
+ (D) = k−1

+

(
ran k+ ∩ ran k−

)
is dense in X+,

k−1
− (D) = k−1

−
(
ran k+ ∩ ran k−

)
is dense in X−.

(tos2) The sesquilinear form B(g, f) := B(k−g, k+f) admits the estimate

|B(g, f)| ≤ ∥g∥X−∥f∥X+
for all g ∈ k−1

− (D), f ∈ k−1
+ (D),

where we denote the continuous extension of B to X− ×X+ still by B.
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(tos3) For every h ∈ X+ there exists a unique g ∈ X− such that ⟨h, f⟩X+
= B(g, f)

for all f ∈ X+.

For one direction of the equivalence between quasi Gelfand triples and triplets of
spaces we are already prepared.

Lemma A.3. Let X+, X0, X− be Hilbert spaces. If (X+,X0,X−) is quasi Gelfand
triple, then (X+,X0,X−) is a triplet of spaces.

Proof. Note that since every quasi Gelfand triple is structure preservingly embedded
in Z− (Theorem 5.5), we can omit the embedding operators. However, if we would
like to be more precise we would just define k+ = ι+ and k− = ι−.

The set D = X+ ∩ X0 ∩ X− = D+ ∩D− is dense in X+ and X− by Corollary 5.1
and dense in X0 by Proposition 4.12. Furthermore,

|B(g, f)| = |⟨g, f⟩X0
| = |⟨g, f⟩X−,X+

| ≤ ∥g∥X−∥f∥X+
. ❑

The reverse direction needs more attention. Especially, because the notion of
triplets of spaces leaves room for ambiguity. Hence, we first want to highlight want
we mean by this ambiguity.

Example A.4. Let w : (0, 1) → (0,∞) be a measurable and (essentially) un-
bounded function such that also 1

w is (essentially) unbounded, e.g., w(x) = 1−x
x and

v : (0, 1) → (0, 1) be a measurable and (essentially) bounded function such that also
1
v is (essentially) bounded, e.g., v(x) = 1

2 . Then we define weighted L2 spaces

X+ = L2
(
(0, 1), w dλ

)
, X0 = L2

(
(0, 1), v dλ

)
and X− = L2

(
(0, 1), 1

w dλ
)
,

where λ denotes the Lebesgue measure. It is straightforward to show that (X+,X−)
is a (complete) dual pair with the dual pairing ⟨g, f⟩X−,X+ =

∫
(0,1)

gf dλ. Note that

the intersection of all these spaces contains C∞
c

(
(0, 1)

)
which is dense in all of these

spaces. Moreover,

B(g, f) = ⟨g, f⟩X0
=

∫
(0,1)

1
wgwfv dλ ≤ ∥v∥∞︸ ︷︷ ︸

≤1

∥g∥X−∥f∥X+
.

Hence, (X+,X0,X−) is a triplet of spaces. However, this is true for every v and
therefore the space X+—or more precisely its inner product—is not uniquely deter-
mined. In order to obtain a quasi Gelfand triple we either have to choose a different
(but equivalent) inner product for X0 or for X−.

The previous example shows that in general we have to expect the necessity to
replace the inner product in X+, X0 or X− by an equivalent inner product in order
to obtain a quasi Gelfand triple.

Although the previous example suggests to change the inner product in the almost
pivot space X0, in our approach it is more convenient to change the inner product
in X−. In fact this just means that we use a different dual pairing for (X+,X−),
namely the pairing that the pivot space X0 induces.

Lemma A.5. Let (X+,X0,X−) be a triplet of spaces and D = ran k+ ∩ ran k−.
Then the continuous extension of

∥g∥X̂−
= sup

f∈k−1
+ (D)\{0}

|⟨k−g, k+f⟩X0
|

∥f∥X+

is an equivalent norm on X−. In particular ∥g∥X̂−
equals the operator norm of

B(g, ·) for all g ∈ X−.
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Proof. By the definition of B and the density of k−1
+ (D) in X+ we have for g ∈

k−1
− (D)

∥g∥X̂−
= sup

f∈k−1
+ (D)\{0}

|B(g, f)|
∥f∥X+

= sup
f∈X+\{0}

|B(g, f)|
∥f∥X+

= ∥B(g, ·)∥.

Consequently, X− ∋ g 7→ ∥B(g, ·)∥ is indeed the continuous extension of k−1
− (D) ∋

g 7→ ∥g∥X̂−
. Note that since B(g, ·) is a bounded antilinear mapping there exists

an hg ∈ X+ such that B(g, ·) = ⟨hg, ·⟩X+
. Hence, ∥g∥X̂−

= ∥hg∥X+

(tos2)

≤ ∥g∥X− and

the mapping g 7→ hg is bounded. Since by item (tos3) this mapping is also bijective,
the open mapping theorem implies that is is boundedly invertible. Therefore,
∥hg∥X+

≥ c∥g∥X̂−
for some c > 0, which leads to

c∥g∥X− ≤ ∥hg∥X+ = ∥g∥X̂−
= ∥hg∥X+ ≤ ∥g∥X− . ❑

Lemma A.6. If (X+,X0,X−) is triplet of spaces, then (X+,X0, X̂−) is a quasi

Gelfand triple, where X̂− = X− equipped with the equivalent norm ∥·∥X̂−
from

Lemma A.5.

Proof. For g ∈ X̂− and f ∈ X+ we define

⟨g, f⟩X̂−,X+
:= B(g, f).

By the definition of the norm of X̂− and (tos3) this is a dual pairing for (X+, X̂−)

and therefore (X+, X̂−) is a dual pair. Note that ∥·∥X̂−
is equivalent to ∥·∥X− by

Lemma A.5.
We will apply Proposition 3.8 on the embedding ι̃+ = k+ to show that this

mapping is closable. Corresponding to ι̃+ there is D− (Definition 3.2), which is a

superset of D and therefore dense in X0 and X̂−. Hence, item (iv) of Proposition 3.8
is satisfied and consequently k+ is closeable. Hence, we define ι+ = k+ and

ι− = (ι−1
+ )∗, where the adjoint is taken w.r.t. the dual pairs (X+, X̂−) and (X0,X0).

Note that ι− is an extension of k−.
1 For f ∈ dom ι+ and g ∈ dom ι− we have

⟨g, f⟩X̂−,X+
= ⟨g, ι−1

+ ι+f⟩X̂−,X+
= ⟨(ι−1

+ )∗g, ι+f⟩X0
= ⟨ι−g, ι+f⟩X0

.

Finally, dom ι∗+ = ran ι− holds true by construction of ι−, which implies that

(X+,X0, X̂−) is a quasi Gelfand triple. ❑

Theorem A.7. Let X+, X0, X− be Hilbert spaces. Then (X+,X0,X−) is a triplet
of spaces, if and only if (X+,X0,X−) is a quasi Gelfand triple (up to an equivalent
norm on X−)

Proof. This is the result of Lemmas A.3 and A.6. ❑

Definition A.8 (Triples of closely embedded Hilbert spaces). Let X+, X0, X− be
Hilbert spaces. Then we say (X+,X0,X−) forms a triple of closely embedded Hilbert
spaces, if the following conditions are satisfied.

(th1) There exists a linear operator j+ : dom j+ ⊆ X+ → X0 that is densely defined,
injective, closed and ran j+ is dense in X0.

(th2) There exists a linear operator j− : dom j− ⊆ X0 → X− that is densely defined,
injective, closed and ran j− is dense in X−.

2

1We did not just regard k−, because we do not know whether Conjecture 6.8 holds.
2Note that here j− maps in the reversed direction compared to ι− in the definition of quasi

Gelfand triples.
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(th3) dom j∗+ ⊆ dom j− and for every h ∈ dom j− ⊆ X0 we have

∥j−h∥X− = sup

{
|⟨j+f, h⟩X0

|
∥f∥X+

∣∣∣∣ f ∈ dom j+, f ̸= 0

}
.

Proposition A.9. Let X+, X0, X− be Hilbert spaces. Then (X+,X0,X−) is a triple
of closely embedded Hilbert spaces, if and only if (X+,X0,X−) is a quasi Gelfand
triple.

Proof. Let (X+,X0,X−) be a triple of closely embedded Hilbert spaces. Then we
define ι+ := j+ and ι− := j−1

− . By item (th3) we have

|⟨ι−g, ι+f⟩X0
| ≤ ∥g∥X−∥f∥X+

for f ∈ dom ι+, g ∈ dom ι−.

Hence, we can extend the sequilinear form ⟨g, f⟩X−,X+
:= ⟨ι−g, ι+f⟩X0

by continuity
to X− ×X+. This sequilinear form is a dual pairing of X+ and X− which leads to
(X+,X−) is a dual pair and (X+,X0,X−) is a quasi Gelfand triple.

Let (X+,X0,X−) be a quasi Gelfand triple. Then we define j+ := ι+ and j− := ι−1
−

and we immediately obtain that (X+,X0,X−) is a triple of closely embedded Hilbert
spaces. ❑

Appendix B. Auxiliary results

Lemma B.1. Let (xn)n∈N be a sequence in a normed vector space X that con-
verges w.r.t. the weak topology to an x0 ∈ X. Then (xn)n∈N is bounded, i.e.,
supn∈N∥xn∥X < +∞.

Proof. Let ι denote the canonical embedding from X into X ′′ that maps x to
⟨x, ·⟩X,X′ . Then, by assumption, for every fixed ϕ ∈ X ′ (ιxn)(ϕ) → (ιx0)(ϕ), in
particular supn∈N|(ιxn)(ϕ)| < ∞. The principle of uniform boundedness yields
supn∈N∥ιxn∥X′′ < +∞. Since ∥ιx∥X′′ = ∥x∥X for every x ∈ X, this proves the
assertion. ❑

Lemma B.2. Let (xn)n∈N be a weak convergent sequence in a Hilbert space H with
limit x. Then there exists a subsequence (xn(k))k∈N such that∥∥∥∥ 1

N

N∑
k=1

xn(k) − x

∥∥∥∥ → 0.

Proof. We assume that x = 0. For the general result we just need to replace xn by
xn − x.

We define the subsequence inductively: n(1) = 1 and for k > 1 we choose n(k)
such that

|⟨xn(k), xn(j)⟩| ≤
1

k
for all j < k.

This is possible, because (xn)n∈N converges weakly to 0. Hence, by Lemma B.1
supn∈N∥xn∥ ≤ C. This yields∥∥∥∥ 1

N

N∑
k=1

xn(k)

∥∥∥∥2 =
1

N2

N∑
k=1

N∑
j=1

⟨xn(k), xn(j)⟩

=
1

N2

N∑
k=1

∥xn(k)∥2 +
1

N2

N∑
j=1

N∑
k=j+1

2Re⟨xn(k), xn(j)⟩

≤ 1

N
C2 +

2

N2

N∑
j=1

N∑
k=j+1

1

k
≤ C2

N
+

1

N
ln(N) → 0. ❑
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The next lemma is also true for general linear relations. However, since densely
defined linear operators are enough for our purpose we restrict ourselves to these
operators, also to use commonly known techniques.

Lemma B.3. Let (X1, Y1), (X1, Z1), (X2, Y2) and (X2, Z2) be dual pairs and
Ψ1 : Y1 → Z1 and Ψ2 : Y2 → Z2 be the isomorphisms between Y1 and Z1, and Y2
and Z2, respectively. Then for a densely defined linear operator A from X1 to X2

we have
A∗Z2×Z1 = Ψ1A

∗Y2×Y1Ψ−1
2 .

Z1 Z2

X1 X2

Y1 Y2

Ψ1

A
∗Z2×Z1

Ψ2
A

Ψ−1
1

A
∗Y2×Y1

Ψ−1
2

Figure 6. A∗Z2×Z1 = Ψ1A
∗Y2×Y1Ψ−1

2

Proof. Let z2 ∈ Z2 be such that Ψ−1
2 z ∈ domA∗Y2×Y1 . Then

⟨Ax1, z2⟩X2,Z2
= ⟨Ax1,Ψ−1

2 z2⟩X2,Y2
= ⟨Ax1,Ψ−1

2 z2⟩X2,Y2
= ⟨x1, A∗Y2×Y1Ψ−1

2 z2⟩X1,Y1

= ⟨x1,Ψ1A
∗Y2×Y1Ψ−1

2 z2⟩X1,Z1 .

This implies Ψ1A
∗Y2×Y1Ψ−1

2 ⊆ A∗Z2×Z1 . The same steps with Z2 and Z1 replaced
with Y2 and Y1 yield the reversed inclusion. ❑

The following theorem can be found in [11, Th. 2 p. 200], we just changed that
the operator maps into a different space, which does not change the proof.

Theorem B.4 (J. von Neumann). Let T be a closed linear operator from the Hilbert
space X to the Hilbert space Y . Then T ∗T and TT ∗ are self-adjoint, and (IX +T ∗T )
and (IY + TT ∗) are boundedly invertible.

Note that here the adjoint T ∗ is calculated with respect to the “natural” dual
pairs (X,X) and (Y, Y ), i.e., T ∗ = T ∗Y ×X .

Proof. Since T ∗ =
[

0 IY
−IX 0

]
T⊥, we have T ⊕

[
0 −IX
IY 0

]
T ∗ = X × Y . Hence, for

[ h0 ] ∈ X × Y there are unique x ∈ domT and y ∈ domT ∗ such that[
h
0

]
=

[
x
Tx

]
+

[
−T ∗y
y

]
. (9)

Consequently, h = x− T ∗y and y = −Tx, which implies x ∈ domT ∗T and

h = x+ T ∗Tx.

Because of the uniqueness of the decomposition in (9), x ∈ domT ∗T is uniquely
determined by h ∈ X. Therefore, (IX + T ∗T )−1 is a well-defined and everywhere
defined operator.

For h1, h2 ∈ X, we define x1 := (IX + T ∗T )−1h1 and x2 := (IX + T ∗T )−1h2.
Then x1, x2 ∈ domT ∗T and, by the closedness of T , T ∗∗ = T . Hence,

⟨h1, (IX + T ∗T )−1h2⟩ = ⟨(IX + T ∗T )x1, x2⟩ = ⟨x1, x2⟩+ ⟨T ∗Tx1, x2⟩
= ⟨x1, x2⟩+ ⟨Tx1, Tx2⟩ = ⟨x1, x2⟩+ ⟨x1, T ∗Tx2⟩
= ⟨x1, (IX + T ∗T )x2⟩ = ⟨(IX + T ∗T )−1h1, h2⟩,
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which yields that (IX + T ∗T )−1 is self-adjoint. Therefore (IX + T ∗T ) and T ∗T are
also self-adjoint. Moreover, (IX + T ∗T )−1 is bounded as a closed and everywhere
defined operator.

By TT ∗ = (T ∗)∗(T ∗) the other statements follow by the already shown. ❑

Lemma B.5. Let T be the operator from the previous theorem. Then domT ∗T is
a core of T .

Proof. Note that domT ∗T is a core of T is equivalent that to domT ∗T is dense
in domT with respect to the graph norm. Hence, it is sufficient to show that the
orthogonal complement of domT ∗T is {0} w.r.t. the graph inner product. Suppose
domT ∗T is not a core, then there exists an x ∈ domT \ {0} such that

0 = ⟨x, y⟩T = ⟨x, y⟩X + ⟨Tx, Ty⟩Y = ⟨x, y + T ∗Ty⟩X for all y ∈ domT ∗T.

By Theorem B.4 (I + T ∗T )y is surjective, which implies x = 0 and contradicts the
assumption. ❑

In the next proposition we will look at the situation where we deal with Hilbert
spaces, but work with another dual pair. We will denote the adjoint with respect
to the canonical Hilbert space dual pair by ∗h and the adjoint with respect to the
other dual pair by ∗d.

Proposition B.6. Let X, H be Hilbert spaces, (X,Y ) be a complete dual pair
and T : domT ⊆ X → H be a densely defined and closed linear operator. Then
T ∗dT : domT ∗dT ⊆ X → Y is self-adjoint, i.e., (T ∗dT )∗d = T ∗dT . Moreover,
domT ∗dT is a core of T .

Proof. For x, y ∈ domT ∗dT we have

⟨T ∗dTx, y⟩Y,X = ⟨Tx, Ty⟩H = ⟨x, T ∗dTy⟩X,Y ,

which leads to T ∗dT ⊆ (T ∗dT )∗d .
By Theorem B.4 we already know that T ∗hT is self-adjoint. Let Ψ: X → Y

the duality mapping, i.e., ⟨Ψx, y⟩Y,X = ⟨x, y⟩X for x, y ∈ X. Then T ∗d = ΨT ∗h

(by Lemma B.3) and therefore T ∗dT = ΨT ∗hT . Now for x ∈ dom(T ∗dT )∗d and
y ∈ domT ∗dT = domT ∗hT we have

⟨Ψ−1(T ∗dT )∗dx, y⟩X = ⟨(T ∗dT )∗dx, y⟩Y,X = ⟨x, T ∗dTy⟩X,Y = ⟨x,Ψ−1T ∗d︸ ︷︷ ︸
=T∗h

Ty⟩X

= ⟨x, T ∗hTy⟩X .

This implies Ψ−1(T ∗dT )∗d ⊆ (T ∗hT )∗h = T ∗hT and applying Ψ on both sides gives
(T ∗dT )∗d ⊆ ΨT ∗hT = T ∗dT .

The last assertion follows from domT ∗dT = domT ∗hT and domT ∗hT is a core
of T , ❑
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