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Abstract. In this work we investigate the Sobolev space H1(∂Ω) on a strongly
Lipschitz boundary ∂Ω, i.e., Ω is a strongly Lipschitz domain (not necessarily
bounded). In most of the literature this space is defined via charts and
Sobolev spaces on flat domains. We show that there is a different approach via
differential operators on Ω and a weak formulation directly on the boundary
that leads to the same space. This second characterization of H1(∂Ω) is in
particular of advantage, when it comes to traces of H(curl,Ω) vector fields.

1. Introduction

We will give two characterizations of H1(∂Ω), where Ω is a strongly Lipschitz
domain (not necessarily bounded). The first is given via charts, which is the usual
approach in literature, and the second is a weak characterization directly on the
boundary, which is related to the weak characterization of an L2(∂Ω) tangential trace
for H(curl,Ω) fields. For bounded Ω there are more alternative characterizations
of H1(∂Ω), e.g., by the Moore–Penrose pseudoinverse in [TCT19] or by Steklov
eigenfunctions in [Auc06].

Our main motivation is that the result we present serves us to fill details in
[Cos90, Proof of Thm. 2], [BBBCD97, Section Le cas tridimensionnel], [BCS02,
Proof of Thm. 5.1] and [Mon03, Proof of Lem. 3.53], where it is used. Unfortunately,
without an explanation or a reference for its validity. Hence, we decided to address
this issue.

In particular, if we regard an f ∈ H1(Ω), then ∇f ∈ H(curl,Ω) follows automati-
cally (because curl∇f = 0). Every element of H(curl,Ω) possesses a tangential trace
in an abstract boundary space and therefore also ∇f possesses a tangential trace.
For smooth functions the tangential trace is well defined as an element of L2(∂Ω)3.
Moreover, for a smooth function the tangential trace of its gradient field coincides
with the boundary gradient of its restriction to the boundary, see Lemma 3.4. This
suggests the following claim.

Claim A. Let f ∈ H1(Ω). If the tangential trace of ∇f belongs to L2(∂Ω)3, then
f
∣∣
∂Ω

belongs to H1(∂Ω).

However, there are two approaches to define “the tangential trace belongs to
L2(∂Ω)3”: The strong approach via limits of smooth functions and the weak approach
via a representation by an L2(∂Ω) inner product. For the strong approach it is
not hard to show that Claim A is true. However, it is more relevant to answer
the question for the weak approach. Hence, we regard the claim with the weak
characterization of L2 tangential traces (Definition 4.1).
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In fact both [BBBCD97] and [Mon03] are using Claim A (with weak L2 tangential
traces) to prove that both approaches (strong and weak) to L2 tangential traces
lead to the same objects, i.e., weak = strong. Hence, in order to avoid a circular
argument we have to resist the temptation to prove Claim A for strong L2 tangential
traces and conclude it for weak by “weak = strong”.

In order to avoid the introduction of unnecessarily many concepts, we broke down
the question to its core, which is an alternative approach to H1(∂Ω), see Definition 3.6.
Hence, we do not need the space H(curl,Ω) and the abstract tangential trace at all,
although these notions are the origin of the question. Nevertheless, in Section 4 we
come back to the original question and show that Claim A holds true.

2. Strongly Lipschitz boundaries

Recall the definition of a strongly Lipschitz domain, see, e.g., [Gri85].

Definition 2.1. Let Ω be an open subset of Rd. We say Ω is a strongly Lipschitz do-
main, if for every p ∈ ∂Ω there exist ϵ, h > 0, a hyperplane W = span{w1, . . . , wd−1},
where {w1, . . . , wd−1} is an orthonormal basis of W , and a Lipschitz continuous
function aW : (p+W ) ∩ Bϵ(p) → (−h

2 ,
h
2 ) such that

∂Ω ∩ Cϵ,h(p) = {x+ aW (x)v |x ∈ (p+W ) ∩ Bϵ(p)},
Ω ∩ Cϵ,h(p) = {x+ sv |x ∈ (p+W ) ∩ Bϵ(p),−h < s < aW (x)},

where v is the normal vector of W and Cϵ,h(p) is the cylinder {x + δv |x ∈ (p +
W ) ∩ Bϵ(p), δ ∈ (−h, h)}.

The boundary ∂Ω is then called strongly Lipschitz boundary.

Note that the condition |aW | < h
2 is not really necessary, however it reduces

technical constructions. If it was not already satisfied, we can force it by shrinking
ϵ.

p
v

W

0

Cϵ,h(p)

Ω

Figure 1. Lipschitz boundary

Locally the boundary is given by the graph of a Lipschitz function, see Figure 1.
Therefore, we can define Lipschitz charts on ∂Ω in the following way. Let p, Cϵ,h(p),
W , v, a be as in Definition 2.1. We will also denote the matrix that contains the
orthonormal basis of W as columns by W , i.e., W ∈ Rd×(d−1). Hence, the mapping
ζ 7→ WTζ gives the coordinates (w.r.t. the basis w1, . . . , wd−1) of the orthogonal
projection of ζ on the hyperplane W . We introduce a strongly Lipschitz chart locally
at p by

k :

{
∂Ω ∩ Cϵ,h(p) → Bϵ(0) ⊆ Rd−1,

ζ 7→ WT(ζ − p).



SOBOLEV SPACES ON A STRONGLY LIPSCHITZ BOUNDARY 3

We say that Γ := ∂Ω ∩ Cϵ,h(p) is the chart domain of k. Also every restriction of a
chart to an open non-empty Γ̂ ⊆ Γ (w.r.t. the trace topology) is again a chart with
chart domain Γ̂. The corresponding inverse chart is given by

k−1 :

{
Bϵ(0) ⊆ Rd−1 → ∂Ω ∩ Cϵ,h(p),

x 7→ p+
∑d−1

i=1 xiwi + aW (p+
∑d−1

i=1 xiwi)v.

In the case where k is a “restricted” chart, we have k−1 : U → Γ̂, where U is
an open non-empty subset of Bϵ(0) in Rd−1. For notational simplicity we define
a : U ⊆ Rd−1 → R by

a(x) := aW

(
p+

d−1∑
i=1

xiwi

)
.

Note that in fact W , v and p establish an alternative coordinate system with
origin p. Hence, by translation and rotation we can, most of the time, assume
(w.l.o.g.) that W = (e1, . . . , ed−1), v = ed and p = 0. This will also better transport
the essence of our ideas. In this coordinate system we have

k


ζ1...
ζd


 =

 ζ1
...

ζd−1

 and k−1(x) =

[
x

a(x)

]
.

However, sometimes it is not entirely obvious that we can reduce the general setting
to this situation or the justification that such a reduction is valid is as difficult as
working in the general setting in the first place. Hence, for completeness we will
repeat the tricky parts for the general setting in the appendix.

Note that k−1 is Lipschitz continuous—since a is Lipschitz continuous by assump-
tion—and therefore k−1 is a.e. differentiable by Rademacher’s theorem, see, e.g.,
[AFP00, Thm. 2.14]. In particular, k−1 ∈ W1,∞(U) and therefore dk−1 is a bounded
multiplication operator on L2(U). Hence, if we don’t write arguments (of functions),
then we regard the functions as Lp objects and omit the comment “a.e.”.

Let k : Γ → U be a strongly Lipschitz chart. The surface measure on ∂Ω is locally
given by

µ(Υ) =

∫
k(Υ)

√
det(dk−1)Tdk−1 dλd−1 for Υ ⊆ Γ,

where λd−1 is the Lebesgue measure in Rd−1. The surface measure is then defined by
a partition of ∂Ω. By Lindelöf’s lemma there exists a countable partition, see, e.g.,
[Nag85, Ch. 3 § 4]. If ∂Ω is bounded then there exists even a finite partition. The
surface measure is independent of the partition and the charts, see Proposition B.4.
Hence, we can switch between the inner products of L2(Γ) and L2(U) by

⟨f, g⟩L2(Γ) =
〈
f ◦ k−1,

√
det(dk−1)Tdk−1 g ◦ k−1

〉
L2(U)

.

Note, if ∂Ω is unbounded and f is integrable, then (by monotone convergence)

lim
r→∞

∫
∂Ω∩Br(0)

f dµ =

∫
∂Ω

f dµ,

where Br(0) is the ball in Rd. In particular for every ϵ > 0 there exists an r > 0
such that

∣∣∫
∂Ω\Br(0)

f dµ
∣∣ ≤ ϵ.
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3. Preparation and main result

We will use for spaces with homogeneous boundary conditions the same notation
as in [BPS16]: For an open set M ⊆ Rd we denote the set of C∞ functions with
compact support in M by

◦
C∞(M) := {Φ ∈ C∞(Rd) | suppΦ ⊆ M and suppΦ is compact}.

Moreover, we denote the standard L2(M) first order Sobolev space by H1(M) and

◦
H1(M) :=

H1(M)◦
C∞(M) .

The circle on top of H1(M) indicates homogeneous boundary conditions.

In the following we assume Ω ⊆ R3 to be a strongly Lipschitz domain. Moreover,
we will assume that the strongly Lipschitz charts k : Γ ⊆ ∂Ω → U are of the following
form

k−1 :


U → Γ,[

x1

x2

]
7→

 x1

x2

a(x1, x2)

 ,

where U is an open subset of R2 and a : U → R is a Lipschitz continuous mapping.
The outward pointing normalized normal vector (as an element of L∞) is then
locally given by

ν ◦ k−1 =
1√

1 + ∥∇a∥2

−∂1a
−∂2a
1

 .

In Appendix A we show, which modifications have to be done when we work with
“general” strongly Lipschitz charts. We could also do everything for “general” strongly
Lipschitz charts in the first place, however it does not transport the underlying ideas
that well. Also we did not want to just say that we can always reduce everything to
these “special” strongly Lipschitz charts, as sometimes it is not obvious how this
“w.l.o.g.” is justified.

Lemma 3.1. Let k : Γ → U be a strongly Lipschitz chart. Then

det
(
(dk−1)Tdk−1

)
= 1 + ∥∇a∥2.

Proof. Note that

dk−1 =

 1 0
0 1

∂1a ∂2a

 and (dk−1)Tdk−1 =

[
1 0
0 1

]
+

[
∂1a
∂2a

] [
∂1a ∂2a

]
.

Hence, Lemma C.1 applied to v =
[
∂1a(x)
∂2a(x)

]
for a.e. x ∈ U implies the claim. ❑

Recall the Moore-Penrose inverse: For an injective matrix A it is given by
A† = (ATA)−1AT. Our first approach to the first order Sobolev space on ∂Ω is
well-known, see, e.g., [BCS02, beginning of Sec. 3], [Gri85, Def. 1.3.3.2] or [Neč12,
after Ch. 2, Thm. 4.10].

Definition 3.2. Let Ω be additionally bounded and f ∈ L2(∂Ω). We say f ∈
H1(∂Ω), if for every strongly Lipschitz chart k : Γ → U we have f ◦ k−1 ∈ H1(U).
The tangential gradient is then defined by

(∇τf)
∣∣
Γ
=
[
d(f ◦ k−1)(dk−1)†

]T ◦ k =
[
(dk−1)†

T∇R2(f ◦ k−1)
]
◦ k.

We endow H1(∂Ω) with the following norm

∥f∥H1(∂Ω) =
√

∥f∥2L2(∂Ω) + ∥∇τf∥2L2(∂Ω).
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Note that, if the previous definition is true for a set of charts whose chart domains
cover ∂Ω, then it is already true for all charts. Moreover, the definition of the
tangential gradient is independent of the chart, see Proposition B.3.

Furthermore, note that the previous definition is fine, if we regard bounded
domains Ω or their complements (finitely many charts cover the entire boundary).
However, if we deal with domains Ω with unbounded boundaries (the boundary
cannot be covered by finitely many charts), then local integrability does not lead to
global integrability. Hence, we need to add an extra assumption to the definition of
H1(∂Ω).

Definition 3.3. Let f ∈ L2
loc(∂Ω). We say f ∈ H1

loc(∂Ω), if for every strongly
Lipschitz chart k : Γ → U we have f ◦ k−1 ∈ H1(U). The tangential gradient is then
defined by

(∇τf)
∣∣
Γ
=
[
d(f ◦ k−1)(dk−1)†

]T ◦ k =
[
(dk−1)†

T∇R2(f ◦ k−1)
]
◦ k.

We say f ∈ H1(∂Ω), if additionally f ∈ L2(∂Ω) and ∇τf ∈ L2(∂Ω)3. We endow
H1(∂Ω) with the following norm

∥f∥H1(∂Ω) =
√

∥f∥2L2(∂Ω) + ∥∇τf∥2L2(∂Ω).

Note that for a.e. ζ ∈ ∂Ω the tangential space is spanned by the columns of
dk−1(k(ζ)). We denote the space of all L2(∂Ω) vector fields that are pointwise a.e.
in the tangential space by

L2
τ (∂Ω) := {g ∈ L2(∂Ω)3 | ν · g = 0}.

By construction ∇τf belongs to L2
τ (∂Ω). This can be seen by

(ν · ∇τf) ◦ k−1 = ν ◦ k−1 · dk−1
(
(dk−1)Tdk−1

)−1∇R2(f ◦ k−1) = 0,

because ν ◦ k−1 ⊥ dk−1 by definition.
The orthogonal projection on L2

τ (∂Ω) is given by q 7→ (ν × q) × ν. For a
Q ∈

◦
C∞(R3)3 we define the tangential trace by

πτQ :=
(
ν ×Q

∣∣
∂Ω

)
× ν

For smooth functions F ∈
◦
C∞(R3) the next lemma shows that the tangential

gradient on ∂Ω matches the tangential trace of the volume gradient on Ω.

Lemma 3.4. For F ∈
◦
C∞(R3) we have F

∣∣
∂Ω

∈ H1(∂Ω) and

∇τ (F
∣∣
∂Ω

) =
(
ν × (∇F )

∣∣
∂Ω

)
× ν = πτ∇F.

Proof. Note that suppF is compact by assumption, therefore also suppF
∣∣
∂Ω

is
compact and we need only finitely many charts to cover suppF

∣∣
∂Ω

. Consequently,
it is enough to show that F

∣∣
∂Ω

is in H1
loc(∂Ω).

Let k : Γ → U be an arbitrary strongly Lipschitz chart. Then F
∣∣
∂Ω

◦k−1 = F ◦k−1

belongs to H1(U) by the chain rule. The tangential space at a.e. ζ ∈ Γ is given by
the columns of dk−1(k(ζ)). By construction the normal vector ν(ζ) is orthogonal
on this space. By Definition 3.3 and the chain rule we have(

∇τF
∣∣
∂Ω

)∣∣
Γ
=
[
d(F ◦ k−1)(dk−1)†

]T ◦ k =
[
(dF ◦ k−1)dk−1(dk−1)†

]T ◦ k.

Note that by Lemma C.3 the matrix dk−1(dk−1)† ◦k(ζ) is the orthogonal projection
on ran dk−1(k(ζ)) for a.e. ζ ∈ Γ. In particular this matrix is symmetric. Moreover,
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by Lemma C.2 also (ν(ζ)× ·)× ν(ζ) is the orthogonal projection on the same space
for a.e. ζ ∈ Γ. Hence,(

∇τF
∣∣
∂Ω

)∣∣
Γ
=
(
dk−1(dk−1)† ◦ k

)
(∇F ◦ k−1) ◦ k =

(
dk−1(dk−1)† ◦ k

)
(∇F )

∣∣
Γ

=
(
ν × (∇F

)∣∣
Γ
)× ν = (πτ∇F )

∣∣
Γ
. ❑

Lemma 3.5. Let F ∈
◦
C∞(R3) and Φ ∈

◦
C∞(R3)3. Then〈

πτ∇F, ν × Φ
∣∣
∂Ω

〉
L2(∂Ω)

=
〈
F
∣∣
∂Ω

, ν · (curl Φ)
∣∣
∂Ω

〉
L2(∂Ω)

.

Proof. By the integration by parts formula for curl and div-∇ we have〈
πτ∇F, ν × Φ

∣∣
∂Ω

〉
L2(∂Ω)

= ⟨∇F, curl Φ⟩L2(Ω) − ⟨curl∇F︸ ︷︷ ︸
=0

,Φ⟩L2(Ω)

= −⟨F,div curl Φ︸ ︷︷ ︸
=0

⟩L2(Ω) +
〈
F
∣∣
∂Ω

, ν · (curl Φ)
∣∣
∂Ω

〉
L2(∂Ω)

=
〈
F
∣∣
∂Ω

, ν · (curl Φ)
∣∣
∂Ω

〉
L2(∂Ω)

. ❑

The previous lemma motivates the following alternative definition for L2(∂Ω)
elements that possess a tangential gradient in a weak sense.

Definition 3.6. Let Ω be a strongly Lipschitz domain. Then we say f ∈ H̃1(∂Ω),
if there exists a q ∈ L2

τ (∂Ω) such that for all Φ ∈
◦
C∞(R3)3〈

q, ν × Φ
∣∣
∂Ω

〉
L2(∂Ω)

=
〈
f, ν · (curl Φ)

∣∣
∂Ω

〉
L2(∂Ω)

.

Moreover, we say ∇̃τf = q.

Our goal will be to show that the space H̃1(∂Ω) coincides with H1(∂Ω). By
Lemma 3.5 we see that F

∣∣
∂Ω

∈ H̃1(∂Ω) for every F ∈
◦
C∞(R3).

Theorem 3.7. The set
{
Φ
∣∣
∂Ω

∣∣Φ ∈
◦
C∞(Rd)

}
is dense in H1(∂Ω) w.r.t. ∥·∥H1(∂Ω).

Proof. We will divide the proof into four steps. The first step is only needed, if ∂Ω
is unbounded.
1. Step: Reduce problem to finitely many charts. Let f ∈ H1(∂Ω). Then we can
approximate f by a cutoff version of f w.r.t. ∥·∥H1(∂Ω) in the following way. For
given ϵ > 0 we choose r > 0 so large that for Γr := ∂Ω ∩ Br(0) and Γ∁

r = ∂Ω \ Br(0)

∥f∥L2(Γ∁
r)
+∥∇τf∥L2(Γ∁

r)
=

(∫
∂Ω\Br(0)

∥f∥2 dµ
) 1

2

+

(∫
∂Ω\Br(0)

∥∇τf∥2 dµ
) 1

2

<
ϵ

6
,

where Br(0) is the ball in Rd. We choose a cutoff χ ∈
◦
C∞(Rd) such that

0 ≤ χ ≤ 1, ∥∇χ∥∞ ≤ 1, suppχ ⊆ Br+2(0), and χ
∣∣
Br(0)

≡ 1.

Then we define fr := χf . It is easy to check that fr ∈ H1(∂Ω) and ∇τfr =
(∇τχ)f + χ∇τf . Hence, we have

∥f − fr∥H1(∂Ω) ≤ ∥f − fr∥L2(∂Ω) + ∥∇τf −∇τfr∥L2(∂Ω)

= ∥f − χf∥L2(∂Ω) + ∥∇τf − (∇τχ)f − χ∇τf∥L2(∂Ω)

Note that χ ≡ 1 and ∇τχ ≡ 0 on Br(0), therefore, we further have

= ∥f − χf∥L2(Γ∁
r)

+ ∥∇τf − (∇τχ)f − χ∇τf∥L2(Γ∁
r)

≤ 3
(
∥f∥L2(Γ∁

r)
+ ∥∇τf∥L2(Γ∁

r)

)
≤ ϵ

2
.

Hence, it is left to approximate fr, whose support is compact. In particular
supp fr ⊆ ∂Ω ∩ Br+2(0).
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2. Step: Approximate in local coordinates. By the definition of a strongly Lipschitz
domain we have for every ζ ∈ ∂Ω, a hyperplane W , a cylinder Cϵ,h(ζ) (ϵ and h
depend on ζ), and a chart k : Γ → Bϵ(0), where Γ = ∂Ω ∩ Cϵ,h(ζ). Hence, we can
cover supp fr ⊆ ∂Ω by

⋃
ζ∈supp fr

Cϵ,h(ζ) and since supp fr is compact, there is a
finite subcover

⋃m
i=1 Cϵi,hi(pi). We employ a partition of unity and obtain (αi)

m
i=1,

subordinate to this subcover, i.e.,

αi ∈
◦
C∞(Cϵi,hi

(pi)
)
, αi(ζ) ∈ [0, 1], and

m∑
i=1

αi(ζ) = 1 for all ζ ∈ supp fr.

For fr we define fi = αi

∣∣
∂Ω

fr. It is straightforward to show that also fi ∈ H1(∂Ω).
We define Γi = ∂Ω∩Cϵi,hi(pi) and the corresponding chart ki : Γi → Bϵi(0) ⊆ Rd−1.
Note that αi

∣∣
∂Ω

has compact support in Γi. Therefore, fi ◦k−1
i has compact support

in Bϵi(0) and fi ◦ k−1
i ∈

◦
H1(Bϵi(0)). This implies that there exists a sequence

(φi,n)n∈N in
◦
C∞(Bϵi(0)) that converges to fi ◦ k−1

i w.r.t. ∥·∥H1(Bϵi
(0)).

3. Step: Lift local approximation to Rd. We define an extension of φi,n on Rd with
support on a strip by

Φi,n

([
ζ1...
ζd

])
:= φi,n

([
ζ1...

ζd−1

])
or Φi,n(ζ) := φi,n(W

T(ζ − pi))

in the general coordinates. Hence, Φi,n ∈ C∞(Rd). Note that we do not want that
suppΦi,n intersects ∂Ω outside of Γi. Thus, we multiply Φi,n by a suitable

◦
C∞

cutoff function that is 1 in a neighborhood of Γi (for all n ∈ N the same cutoff
function). Consequently, we even have Φi,n ∈

◦
C∞(Rd).

By construction we have Φi,n

∣∣
Γi

= φi,n ◦ ki and Φi,n

∣∣
∂Ω

→ fi in H1(∂Ω). Now

we define Φn =
∑m

i=1 Φi,n ∈
◦
C∞(Rd) and obtain Φn

∣∣
∂Ω

→ fr in H1(∂Ω).

4. Step: Finish. Finally, we choose n ∈ N so large that ∥fr −Φn∥H1(∂Ω) ≤ ϵ
2 . Then

we have
∥f − Φn∥H1(∂Ω) ≤ ∥f − fr∥H1(∂Ω) + ∥fr − Φn∥H1(∂Ω) ≤ ϵ. ❑

The density of {Φ
∣∣
∂Ω

|Φ ∈
◦
C∞(Rd)} implies that every f ∈ H1(∂Ω) is automati-

cally also in H̃1(∂Ω), as the following corollary shows.

Corollary 3.8. H1(∂Ω) ⊆ H̃1(∂Ω) and ∇τf = ∇̃τf for all f ∈ H1(∂Ω).

Proof. Let f ∈ H1(∂Ω). Then by Theorem 3.7 there exists a sequence (Fn)n∈N in
◦
C∞(R3) such that Fn

∣∣
∂Ω

→ f w.r.t. ∥·∥H1(∂Ω). Hence, by Lemma 3.4 and Lemma 3.5
we have for every Φ ∈

◦
C∞(R3)

⟨∇τf, ν × Φ⟩L2(∂Ω) = lim
n→∞

⟨∇τFn

∣∣
∂Ω

, ν × Φ⟩L2(∂Ω) = lim
n→∞

⟨πτ∇Fn, ν × Φ⟩L2(∂Ω)

= lim
n→∞

⟨Fn

∣∣
∂Ω

, ν · (curl Φ)
∣∣
∂Ω

⟩L2(∂Ω) = ⟨f, ν · (curl Φ)
∣∣
∂Ω

⟩L2(∂Ω),

which implies f ∈ H̃1(∂Ω) and ∇τf = ∇̃τf . ❑

The next two lemmas are the foundation of the main result (for general strongly
Lipschitz charts their analogies are Lemmas A.1 and A.2). The second of these
lemmas gives a lifting of a smooth function φ on a flat domain in R2 to a smooth
function Φ on R3 such that the twisted tangential trace of the lifting Φ equals the
tangential field that corresponds to φ (i.e., dk−1φ). This automatically gives an
identity for the R2 divergence of φ in terms of Φ.
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Lemma 3.9. Let k : Γ → U be a strongly Lipschitz chart. Then for every φ ∈
◦
C∞(U)2 we have

1√
det
(
(dk−1)Tdk−1

)dk−1φ = (ν ◦ k−1)×

 φ2

−φ1

0

 .

Proof. The following calculation proves the claim

(ν ◦ k−1)×

 φ2

−φ1

0



=

 0 −ν3 ν2
ν3 0 −ν1
−ν2 ν1 0

 ◦ k−1

 φ2

−φ1

0

 = φ2

 0
ν3
−ν2

 ◦ k−1 − φ1

−ν3
0
ν1

 ◦ k−1

=
1√

1 + ∥∇a∥2

φ1

 1
0

∂1a

+ φ2

 0
1

∂2a

 =
1√

det
(
(dk−1)Tdk−1

)dk−1φ. ❑

Lemma 3.10. Let Γ ⊆ ∂Ω be a chart domain and k : Γ → U a strongly Lipschitz
chart. Then for every φ ∈

◦
C∞(U)2 there exists a Φ ∈

◦
C∞(R3)3 such that we have

Φ
∣∣
Γ
=

 φ2

−φ1

0

 ◦ k and Φ
∣∣
∂Ω\Γ = 0

on the boundary, and

dk−1φ =
√
det
(
(dk−1)Tdk−1

)
(ν × Φ) ◦ k−1, (1)

divR2 φ = −
√

det
(
(dk−1)Tdk−1

)
(ν · curl Φ) ◦ k−1. (2)

Proof. We define

Φ̂ :


U × R ⊆ R3 → C3,ζ1ζ2

ζ3

 7→

 φ2(ζ1, ζ2)
−φ1(ζ1, ζ2)

0

 .

Since φ has compact support in U we can extend Φ̂ outside of U ×R by 0. Moreover
we choose an ϵ > 0 such that the ball with radius 2ϵ around Γ satisfies

B2ϵ(Γ) ∩ supp Φ̂ ∩ (∂Ω \ Γ) = ∅.

Finally, we choose a cutoff function χ ∈
◦
C∞(R3) such that χ

∣∣
Bϵ(Γ)

= 1 and

χ
∣∣
B2ϵ(Γ)∁

= 0 and we define Φ := χΦ̂. Hence, Φ
∣∣
∂Ω\Γ = 0.

By construction we have Φ ◦ k−1(x1, x2) =

[
φ2(x1,x2)
−φ1(x1,x2)

0

]
. Thus, Lemma 3.9

implies (1).
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Note that locally around Γ we have Φ =
[ φ2
−φ1

0

]
and ∂3Φ = 0. Hence, we have

−
√
1 + ∥∇a∥2 ν · curl Φ =

∂1a∂2a
−1

 ·

 0 −∂3 ∂2
∂3 0 −∂1
−∂2 ∂1 0

 φ2

−φ1

0


=

∂1a∂2a
−1

 ·

 ∂3φ1

∂3φ2

−∂1φ1 − ∂2φ2


= ∂1a ∂3φ1︸ ︷︷ ︸

=0

+ ∂2a ∂3φ2︸ ︷︷ ︸
=0

+ ∂1φ1 + ∂2φ2 = divR2 φ. ❑

Finally, we come to the main result, that proves that both presented approaches
(Definition 3.3 and Definition 3.6) to the first order Sobelev space on ∂Ω lead to the
same space.

Theorem 3.11. H̃1(∂Ω) = H1(∂Ω) and ∇̃τf = ∇τf for all f ∈ H1(∂Ω).

Proof. We have already shown H1(∂Ω) ⊆ H̃1(∂Ω) in Corollary 3.8. Hence, it is left
to show the reverse inclusion.

Let f ∈ H̃1(∂Ω), i.e., there exists a q ∈ L2
τ (∂Ω)

3 such that〈
q, ν × Φ

∣∣
∂Ω

〉
L2(∂Ω)

=
〈
f, ν · (curl Φ)

∣∣
∂Ω

〉
L2(∂Ω)

for all Φ ∈
◦
C∞(R3)3 (3)

Let Γ ⊆ ∂Ω be a chart domain, U ⊆ R2 open and k : Γ → U a strongly Lipschitz
chart. For an arbitrary φ ∈

◦
C∞(U) we define Φ as in Lemma 3.10. Then we have

− ⟨f ◦ k−1,divR2 φ⟩L2(U)

(2)
=

〈
f ◦ k−1,

√
det
(
(dk−1)Tdk−1

)
(ν · curl Φ) ◦ k−1

〉
L2(U)

=
〈
f, ν · curl Φ

∣∣
∂Ω

〉
L2(Γ)

=
〈
f, ν · curl Φ

∣∣
∂Ω

〉
L2(∂Ω)

(3)
=
〈
q, ν × Φ

∣∣
∂Ω

〉
L2(∂Ω)

=
〈
q, ν × Φ

∣∣
∂Ω

〉
L2(Γ)

=

〈
q ◦ k−1,

√
det
(
(dk−1)Tdk−1

)
(ν × Φ) ◦ k−1

〉
L2(U)

(1)
=
〈
q ◦ k−1,dk−1φ

〉
L2(U)

=
〈
(dk−1)T(q ◦ k−1), φ

〉
L2(U)

Hence, f ◦ k−1 ∈ H1(U) and ∇τf
∣∣
Γ
= q

∣∣
Γ
. Since this is true for any chart k

we conclude f ∈ H1
loc(∂Ω) and ∇τf = q = ∇̃τf . Since q ∈ L2

τ (∂Ω) we conclude
f ∈ H1(∂Ω). ❑

4. Back to the original question

In order to verify Claim A we will recall the basics about H(curl,Ω), see, e.g.,
[Mon03, Section 3.5].

First of all, we define the space

H(curl,Ω) := {E ∈ L2(Ω)3 | curlE ∈ L2(Ω)3}.

where we understand curlE a priori in a distributional sense. Note that a straight-
forward calculation gives curl∇F = 0 for all F ∈

◦
C∞(R3). Hence, by continuity

this passes on to F ∈ H1(Ω). This leads to ∇F ∈ H(curl,Ω) for all F ∈ H1(Ω). The
integration by parts formula for curl for smooth functions E,H ∈

◦
C∞(R3)3 reads

as follows

⟨E, curlH⟩L2(Ω) − ⟨curlE,H⟩L2(Ω) =
〈
πτE, ν ×H

∣∣
∂Ω

〉
L2(∂Ω)

.



10 NATHANAEL SKREPEK

This motivates the following weak definition of L2 tangential traces for H(curl,Ω)
elements.

Definition 4.1. We say E ∈ H(curl,Ω) possesses a (weak) L2 tangential trace, if
there exists a q ∈ L2

τ (∂Ω) such that

⟨E, curl Φ⟩L2(Ω) − ⟨curlE,Φ⟩L2(Ω) = ⟨q, ν × Φ
∣∣
∂Ω

⟩L2
τ (∂Ω) for all Φ ∈

◦
C∞(R3)3.

We say then q is the (weak) tangential trace of E, i.e., πτE = q.

Theorem 4.2. Let F ∈ H1(Ω) be such that ∇F possesses a (weak) L2 tangential
trace. Then F

∣∣
∂Ω

∈ H1(∂Ω) and πτ∇F = ∇τF
∣∣
∂Ω

.

Proof. Let q ∈ L2
τ (∂Ω) be such that q = πτ∇F . By the integration by parts formula

for curl and div-∇, we have for an arbitrary Φ ∈
◦
C∞(R3)3

⟨q, ν × Φ
∣∣
∂Ω

⟩L2
τ (∂Ω) = ⟨∇F, curl Φ⟩L2(Ω) − ⟨curl∇F︸ ︷︷ ︸

=0

,Φ⟩L2(Ω)

= −⟨F,div curl Φ︸ ︷︷ ︸
=0

⟩L2(Ω) +
〈
F
∣∣
∂Ω

, ν · (curl Φ)
∣∣
∂Ω

〉
L2(∂Ω)

=
〈
F
∣∣
∂Ω

, ν · (curl Φ)
∣∣
∂Ω

〉
L2(∂Ω)

.

Hence, F
∣∣
∂Ω

satisfies all requirements of Definition 3.6, which implies, by Theo-
rem 3.11, F

∣∣
∂Ω

∈ H1(∂Ω). In particular we have

πτ∇F = q = ∇̃τF
∣∣
∂Ω

= ∇τF
∣∣
∂Ω

. ❑

5. Conclusion

With Theorem 3.11 we have shown that both presented approaches to H1(∂Ω)
agree. Moreover, Theorem 4.2 answers the question about the validity of Claim A,
that started the whole discussion, positively. Hence, we provide the details that
are used in [Cos90, Proof of Thm. 2], [BBBCD97, Section Le cas tridimensionnel],
[Mon03, Proof of Lem. 3.53], and [BCS02, Proof of Thm. 5.1].

Acknowledgement
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Appendix A. Details for general hyperplanes

Note that in the setting with a general hyperplane W = span{w1, w2}, where w1

and w2 are an orthonormal basis of W , and its normal vector v we have

k−1 :

{
U ⊆ R2 → Γ,
(x1, x2) 7→ p+ x1w1 + x2w2 + a(x1, x2)v.

Hence,
dk−1 =

[
w1 + ∂1av w2 + ∂2av

]
and the normal vector on the tangential space is locally given by

ν ◦ k−1 =
1√

1 + ∥∇a∥2
(−∂1aw1 − ∂2aw2 + v).

Moreover, we have

(dk−1)Tdk−1 =

[
1 + (∂1a)

2 ∂1a∂2a
∂1a∂2a 1 + (∂2a)

2

]
=

[
1 0
0 1

]
+

[
∂1a
∂2a

] [
∂1a ∂2a

]
.

and therefore Lemma 3.1 follows also for general strongly Lipschitz charts:

det
(
(dk−1)Tdk−1

)
= 1 + ∥∇a∥2.

We show the modified Lemmas 3.9 and 3.10 for general strongly Lipschitz charts
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Lemma A.1. For φ ∈
◦
C∞(U)2 we have

dk−1φ =
√

det
(
(dk−1)Tdk−1

)
(ν ◦ k−1)× (φ2w1 − φ1w2),

where the orthogonal basis {w1, w2, v} is chosen such that w1 × w2 = v (if this is
not already true we relabel w1 and w2).

Note that w1 × w2 = v implies

w1 × v = −w2 and w2 × v = w1.

Proof. Note that√
det
(
(dk−1)Tdk−1

)
(ν ◦ k−1) = −∂1aw1 − ∂2aw2 + v.

Therefore, the following proves the claim:

(−∂1aw1 − ∂2aw2 + v)× (φ2w1 − φ1w2)

= (∂2av + w2)φ2 + (∂1av + w1)φ1 = dk−1φ. ❑

Lemma A.2. Let Γ ⊆ ∂Ω be a chart domain and k : Γ → U a strongly Lipschitz
chart. Then for every φ ∈

◦
C∞(U)2 there exists a Φ ∈

◦
C∞(R3)3 such that we have

Φ
∣∣
Γ
= W

[
φ2

−φ1

]
◦ k = (φ2 ◦ k)w1 − (φ1 ◦ k)w2 and Φ

∣∣
∂Ω\Γ = 0

on the boundary, and

dk−1φ =
√
det
(
(dk−1)Tdk−1

)
(ν × Φ) ◦ k−1, (4)

divR2 φ = −
√

det
(
(dk−1)Tdk−1

)
(ν · curl Φ) ◦ k−1. (5)

Proof. We define Φ̂ ∈ C∞(R3)3 by

Φ̂(ζ) = W

[
φ2

−φ1

] (
WT(ζ − p)

)
= φ2(W

T(ζ − p))w1 − φ1(W
T(ζ − p))w2,

where W ∈ R3×2 is the matrix containing the vectors w1 and w2 as rows, i.e.,
W =

[
w1 w2

]
. Finally, we define Φ ∈

◦
C∞(R3)3 by Φ := χΦ̂ where χ ∈

◦
C∞(R3)

is such that in a small neighborhood of Γ χ = 1 and Φ
∣∣
∂Ω\Γ = 0. Basically, by

construction we have Φ
∣∣
Γ
= W

[ φ2
−φ1

]
◦ k. Hence, we have Φ ◦ k−1 = φ2w1 − φ1w2

and Lemma A.1 gives (4)
For an arbitrary f ∈

◦
C∞(U) we have

−⟨f, divR2 φ⟩L2(U) = ⟨∇R2f, φ⟩L2(U) =
〈(

(dk−1)†
)T∇R2f, dk−1φ

〉
L2(U)

=
〈[

(dk−1)†
T∇R2f

]
◦ k,

[
1√

det((dk−1)Tdk−1)
dk−1φ

]
◦ k
〉
L2(Γ)

=
〈
∇τ (f ◦ k), ν × Φ

∣∣
Γ

〉
L2(Γ)

=
〈
f ◦ k, ν · (curl Φ)

∣∣
Γ

〉
L2(Γ)

=

〈
f, (ν · curl Φ) ◦ k−1

√
det
(
(dk−1)Tdk−1

)〉
L2(U)

By density of
◦
C∞(U) in L2(U) we obtain (5). ❑
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Appendix B. Independence of the charts

Note that for two strongly Lipschitz charts k1 : Γ1 → U1, k2 : Γ2 → U2 with
overlapping chart domains (i.e., Γ1∩Γ2 ̸= ∅) we have that the columns of dk−1

1 (k1(ζ))
and the columns of dk−1

2 (k2(ζ)) span the same linear subspace of Rd for a.e. ζ ∈
Γ1 ∩ Γ2, namely the tangential space of ∂Ω at ζ. The next lemma will specify this.

Lemma B.1. Let k1 : Γ1 → U1 and k2 : Γ2 → U2 be strongly Lipschitz charts. Then

ran
[
dk−1

1

(
k1(ζ)

)]
= ran

[
dk−1

2

(
k2(ζ)

)]
for a.e. ζ ∈ Γ1 ∩ Γ2.

Moreover,

(dk−1
1 )† ◦ (k1 ◦ k−1

2 ) dk−1
2 = d(k1 ◦ k−1

2 ). (6)

Proof. The first assertion follows from

dk−1
2 = d(k−1

1 ◦ k1 ◦ k−1
2 ) = (dk−1

1 ) ◦ (k1 ◦ k−1
2 ) d(k1 ◦ k−1

2 ) (7)

and the fact that d(k1 ◦ k−1
2 )(ζ) is a regular matrix for a.e. ζ ∈ Γ1 ∩Γ2. Multiplying

both side of (7) from left with (dk−1
1 )† ◦ (k1 ◦ k−1

2 ) implies (6). ❑

Lemma B.2. Let k1 : Γ1 → U1, k2 : Γ2 → U2 strongly Lipschitz charts. Then for
a.e. ζ ∈ Γ1 ∩ Γ2 the following holds

(dk−1
1 )(dk−1

1 )† ◦ k1(ζ) = (dk−1
2 )(dk−1

2 )† ◦ k2(ζ).

Proof. Note that for a.e. ζ ∈ Γ1 ∩ Γ2 we have ran[dk−1
1 (k1(ζ))] = ran[dk−1

2 (k2(ζ))].
By Lemma C.3 (dk−1

1 )(dk−1
1 )†◦k1(ζ) is the orthogonal projection on ran[dk−1

1 (k1(ζ))]
and (dk−1

2 )(dk−1
2 )† ◦ k2(ζ) is the orthogonal projection on ran[dk−1

2 (k2(ζ))]. Since
these ranges coincide we conclude the assertion. ❑

Sometimes it is more convenient to work with the boundary derivative dτ instead
of the the tangential gradient ∇τ . This derivative is given by dτf = (∇τf)

T or
locally by (dτf)

∣∣
Γ
=
[
d(f ◦ k−1)(dk−1)†

]
◦ k.

Proposition B.3. Let f ∈ H1(∂Ω). Then ∇τf and dτf are independent of the
charts.

Proof. Let k1 and k2 be two charts with overlapping chart domains. Then we have

(dτf)
∣∣
Γ1∩Γ2

=
[
d(f ◦ k−1

2 )(dk−1
2 )†

]
◦ k2 =

[
d(f ◦ k−1

1 ◦ k1 ◦ k−1
2 )(dk−1

2 )†
]
◦ k2

=
[
d(f ◦ k−1

1 ) ◦ (k1 ◦ k−1
2 ) d(k1 ◦ k−1

2 )︸ ︷︷ ︸
(6)
=(dk−1

1 )†◦(k1◦k−1
2 )dk−1

2

(dk−1
2 )†

]
◦ k2

=
[
d(f ◦ k−1

1 ) ◦ (k1 ◦ k−1
2 )(dk−1

1 )† ◦ (k1 ◦ k−1
2 ) dk−1

2 (dk−1
2 )†︸ ︷︷ ︸

[dk−1
1 (dk−1

1 )†]◦(k1◦k−1
2 )

L.B.2
=

]
◦ k2

Note that A†AA† = A†.

=
[
d(f ◦ k−1

1 ) ◦ (k1 ◦ k−1
2 )(dk−1

1 )† ◦ (k1 ◦ k−1
2 )
]
◦ k2

=
[
d(f ◦ k−1

1 )(dk−1
1 )†

]
◦ k1. ❑

Proposition B.4. The surface measure on ∂Ω is independent of the partition and
the charts.

Proof. It is enough to show that two charts k1 : Γ1 → U1 and k2 : Γ2 → U2 with
intersecting chart domains define the same surface measure on the intersection
Γ1 ∩ Γ2. The rest can be done by intersecting the two partitions.
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We define the mapping

T :

{
k2(Γ1 ∩ Γ2) ⊆ U2 → k1(Γ1 ∩ Γ2) ⊆ U1,

x 7→ (k1 ◦ k−1
2 )(x),

which gives a bijective bi-Lipschitz continuous mapping. Note that by the chain
rule we have

dk−1
2 = d(k−1

1 ◦ k1 ◦ k−1
2 ) = (dk−1

1 ) ◦ (k1 ◦ k−1
2 )d(k1 ◦ k−1

2 ) = (dk−1
1 ) ◦ TdT.

Moreover, by properties of the determinant we have

|det dT |
√
det(dk−1

1 ◦ T )T(dk−1
1 ◦ T ) =

√
det(dT )TdT

√
det(dk−1

1 ◦ T )T(dk−1
1 ◦ T )

=

√
det(dT )T(dk−1

1 ◦ T )T(dk−1
1 ◦ T )dT

=

√
det((dk−1

1 ◦ T )dT )T((dk−1
1 ◦ T )dT )

=

√
det(dk−1

2 )Tdk−1
2 .

Now for Υ ⊆ Γ1 ∩ Γ2 we have by change of variables∫
k1(Υ)

√
det(dk−1

1 )Tdk−1
1 dλd−1 =

∫
T−1(k1(Υ))

√
det(dk−1

1 )Tdk−1
1 ◦ T |det dT |dλd−1

=

∫
k2(Υ)

√
det(dk−1

2 )Tdk−1
2 dλd−1.

Hence, the surface measure µ(Υ) is independent of the charts. ❑

Appendix C. Some auxiliary lemmas

Lemma C.1. Let v ∈ Rd then

det(I + vvT) = 1 + ∥v∥2.

Proof. Note that the determinant of a matrix equals the product of all eigenvalues.
Let b1, . . . , bd−1 denote an orthonormal basis of {v}⊥. Then we can easily see that
each bi is an eigenvector of I + vvT with eigenvalue 1. Furthermore, (I + vvT)v =
(1 + ∥v∥2)v implies that v is an eigenvector with eigenvalue 1 + ∥v∥2. Hence, we
have found all eigenvalues and consequently the determinant equals 1 + ∥v∥2. ❑

Lemma C.2. For w ∈ C3 with ∥w∥ = 1 the mapping A : v 7→ (w × v)× w is the
orthogonal projection on the orthogonal complement of span{w}.

Proof. Note that (w × v) × w = −w × (w × v) and w × v =
[ 0 −w3 w2

w3 0 −w1
−w2 w1 0

]
v.

Therefore,

(w × v)× w = −

 0 −w3 w2

w3 0 −w1

−w2 w1 0

2

v =

w2
2 + w2

3 −w1w2 −w1w3

−w1w2 w2
1 + w2

3 −w2w3

−w1w3 −w2w3 w2
1 + w2

2

 v

Since ∥w∥ = 1 we further have

=

1 0 0
0 1 0
0 0 1

−

 w2
1 w1w2 w1w3

w1w2 w2
2 w2w3

w1w3 w2w3 w2
3

 v = (I − wwT)v,

which shows the claim. ❑

Lemma C.3. Let A be an injective matrix and A† = (ATA)−1AT its Moore-Penrose
inverse. Then AA† is the orthogonal projection on ranA.
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Proof. Note that kerAT = (ranA)⊥, kerA = (ranAT)⊥, and kerA† = kerAT.
Therefore, kerAA† = kerAT = (ranA)⊥. Moreover,

AA†A = A(ATA)−1ATA = A,

which implies that the ranA is invariant under AA†. Consequently AA† is an
orthogonal projection on ranA. ❑
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