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Abstract. We investigate the boundary trace operators that naturally corre-
spond to H(curl,Ω), namely the tangential and twisted tangential trace, where

Ω ⊆ R3. In particular we regard partial tangential traces, i.e., we look only on a

subset Γ of the boundary ∂Ω. We assume both Ω and Γ to be strongly Lipschitz.
We define the space of all H(curl,Ω) fields that possess a L2 tangential trace

in a weak sense and show that the set of all smooth fields is dense in that

space, which is a generalization of [BBBCD97]. This is especially important
for Maxwell’s equation with mixed boundary condition as we answer the open

problem by Weiss and Staffans in [WS13, Sec. 5] for strongly Lipschitz pairs.

1. Introduction

We will regard a bounded strongly Lipschitz domain Ω ⊆ R3 and the Sobolev
space that corresponds to the curl operator

H(curl,Ω) = {f ∈ L2(Ω) | curl f ∈ L2(Ω)}
and the “natural” boundary traces that are associated with the curl operator

πτf := ν × f
∣∣
∂Ω

× ν and γτf := ν × f
∣∣
∂Ω

for f ∈ C∞(R3),

where ν denotes the outer normal vector on the boundary of Ω. These boundary
traces are called tangential trace and twisted tangential trace, respectively. They are
motivated by the integration by parts formula

⟨curl f, g⟩L2(Ω) − ⟨f, curl g⟩L2(Ω) = ⟨γτf, πτg⟩L2(∂Ω).

We can even extend these boundary operators to H(curl,Ω) by introducing suitable
boundary spaces, see e.g., [BCS02] for full boundary traces or [Skr21] for partial
boundary traces. However, in this article we focus on those f ∈ H(curl,Ω) that
have a meaningful L2(∂Ω) (twisted) tangential trace. Hence, for Γ ⊆ ∂Ω we are
interested in the following spaces

H̊Γ(curl,Ω) = {f ∈ H(curl,Ω) |πτf = 0 on Γ},

ĤΓ(curl,Ω) = {f ∈ H(curl,Ω) |πτf is in L2(Γ)}.

where we will later state precisely what we mean by πτf = 0 on Γ and πτf ∈ L2(Γ).

In particular we are interested in ĤΓ(curl,Ω). Similar to Sobolev spaces there are
two approaches to πτf ∈ L2(Γ): A weak approach by representation in an inner
product and a strong approach by limits of regular functions. We use the weak
approach as definition, see Definition 4.1. The question that immediately arises is:
“Do both approaches lead to the same space?”

In [WS13, eq. (5.20)] the authors observed this problem and concluded that it
can cause ambiguity for boundary conditions, if the approaches don’t coincide. In
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fact they stated this issue at the end of section 5 in [WS13] as an open problem.
This problem can actually be viewed as a more general question that arises for quasi
Gelfand triples, see [Skr23b, Conjecture 6.7].

We will not explicitly define the strong approach, but show that the most regular
functions (C∞ functions) are already dense in the weakly defined space, which
immediately implies that any strong approach with less regular functions (e.g.,
H1) will lead to the same space. This is exactly what was done in [BBBCD97] for
Γ = ∂Ω. Hence, we present a generalization of [BBBCD97] for partial L2 tangential
traces. In particular, we aim to prove the following two main theorems.

Theorem 1.1. Let Ω be a bounded strongly Lipschitz domain and Γ1 ⊆ ∂Ω such
that (Ω,Γ1) is a strongly Lipschitz pair, then C̊∞(R3) is dense in ĤΓ1

(curl,Ω) with
respect to ∥·∥ĤΓ1 (curl,Ω).

Theorem 1.2. Let Ω be a bounded strongly Lipschitz domain and Γ0 ⊆ ∂Ω such
that (Ω,Γ0) is a strongly Lipschitz pair, then C̊∞

Γ0
(R3) is dense in Ĥ∂Ω(curl,Ω) ∩

H̊Γ0
(curl,Ω) with respect to ∥·∥Ĥ∂Ω(curl,Ω).

However, it turned out that it is best to prove them in reversed order.
The importance of our density results lies in the context of Maxwell’s equations

with boundary conditions that involve a mixture of πτ and γτ in the sense of linear
combination, e.g., this simplified instance of Maxwell’s equations

∂tE(t, ζ) = curlH(t, ζ), t ≥ 0, ζ ∈ Ω,

∂tH(t, ζ) = − curlE(t, ζ), t ≥ 0, ζ ∈ Ω,

πτE(t, ξ) + γτH(t, ξ) = 0, t ≥ 0, ξ ∈ Γ1,

πτE(t, ξ) = 0, t ≥ 0, ξ ∈ Γ0.

In order to properly formulate the boundary conditions we need to know what
functions E, H have tangential traces that allow such a linear combination. Espe-
cially when it comes to well-posedness our density results are needed to avoid the
ambiguity that was observed in [WS13].

As suspected by Weiss and Staffans in [WS13] the regularity of the interface of
Γ0 ⊆ ∂Ω and Γ1 := ∂Ω \ Γ0 seems to play a role. At least for our answer we need
that the boundary of Γ0 is also strongly Lipschitz.

In particular our strategy is based on the following decomposition from [PS22a,
Thm. 5.2]

H̊Γ0
(curl,Ω) = H̊1

Γ0
(Ω) +∇H̊1

Γ0
(Ω), (1)

which requires (Ω,Γ0) to be a strongly Lipschitz pair. Every element of H̊1
Γ0
(Ω) can

be approximated by a sequence in C̊∞
Γ0
(R3) w.r.t. ∥·∥H1(Ω) (see [BPS16, Lmm. 3.1]),

which is a stronger norm than the “natural” norm of Ĥ∂Ω(curl,Ω). Hence, the

challenging part will be finding an approximation by C̊∞
Γ0
(R3) elements for all

elements in

Ĥ∂Ω(curl,Ω) ∩∇H̊1
Γ0
(Ω).

It even turned out that, if we can prove the decomposition (1) also for less regular
Γ0, then our main theorems would automatically generalize for those less regular
partitions of ∂Ω, since this is the only occasion where the regularity of Γ0 is used.
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2. Preliminary

For Ω ⊆ Rd open and Γ ⊆ ∂Ω open we use the following notation (as in [BPS16])

C̊∞(Ω) :=
{
f ∈ C∞(Ω)

∣∣ supp f is compact in Ω
}
,

C̊∞
Γ (Ω) :=

{
f
∣∣
Ω

∣∣∣ f ∈ C̊∞(Rd),dist(Γ, supp f) > 0
}
,

and H1(Ω) denotes the usual Sobolev space and H̊1
Γ(Ω) is the subspace of H1(Ω)

with homogeneous boundary data on Γ, i.e., H̊1
Γ(Ω) = C̊∞

Γ (Ω)
H1(Ω)

.
Note that the trace operators πτ and γτ are called tangential traces, because

ν ·πτf = 0 and ν · γτf = 0. Hence, it is natural to introduce the tangential L2 space
on Γ ⊆ ∂Ω by

L2
τ (Γ) = {f ∈ L2(Γ) | ν · f = 0}.

This space is again a Hilbert space with the L2(Γ) inner product. Moreover, both

πτ C̊
∞
∂Ω\Γ(R

3) and γτ C̊
∞
∂Ω\Γ(R

3) are dense in that space.

Next we recall the definition of a strongly Lipschitz domain, see e.g., [Gri85].
Moreover, we need H1 spaces on strongly Lipschitz boundaries, see e.g, [Skr23a] for
a careful treatment.

Definition 2.1. Let Ω be an open subset of Rd. We say Ω is a strongly Lipschitz do-
main, if for every p ∈ ∂Ω there exist ϵ, h > 0, a hyperplane W = span{w1, . . . , wd−1},
where {w1, . . . , wd−1} is an orthonormal basis of W , and a Lipschitz continuous
function a : (p+W ) ∩ Bϵ(p) → (−h

2 ,
h
2 ) such that

∂Ω ∩ Cϵ,h(p) = {x+ a(x)v |x ∈ (p+W ) ∩ Bϵ(p)},
Ω ∩ Cϵ,h(p) = {x+ sv |x ∈ (p+W ) ∩ Bϵ(p),−h < s < a(x)},

where v is the normal vector of W and Cϵ,h(p) is the cylinder {x + δv |x ∈ (p +
W ) ∩ Bϵ(p), δ ∈ (−h, h)}.

The boundary ∂Ω is then called strongly Lipschitz boundary.

p
v

W

0

Cϵ,h(p)

Ω

Figure 1. Lipschitz boundary

Corresponding to a strongly Lipschitz domain we define the following bi-Lipschitz
continuous mapping

k :

{
∂Ω ∩ Cϵ,h(p) → Bϵ(0) ⊆ Rd−1,

ζ 7→ WT(ζ − p),

where we used W as the matrix [w1 ... wd−1 ]. We call this mapping a regular
Lipschitz chart of ∂Ω and we call its domain the chart domain. Its inverse is given
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by

k−1 :

{
Bϵ(0) ⊆ Rd−1 → ∂Ω ∩ Cϵ,h(p),

x 7→ p+Wx+ a(x)v,

where we will use a(x) also as shortcut for a(p +Wx), which is then a Lipschitz
continuous function from Bϵ(0) ⊆ Rd−1 to R. Charts are used to regard the surface
of Ω locally as a flat subset of Rd−1. Every restriction of a chart k to an open
Γ ⊆ ∂Ω is again a chart. The shape of k(Γ), which is the image of the restricted
chart, can be less “regular” than the nice shape of the ball Bϵ(0), which was the
original image. Hence, for some investigations such restricted charts are not suitable.
Therefore, we call such a restricted chart in general just Lipschitz chart in contrast
to regular Lipschitz charts.

Definition 2.2. Let Ω be a strongly Lipschitz domain in Rd. Then we say that an
open Γ0 ⊆ ∂Ω is strongly Lipschitz, if k(Γ0) is strongly Lipschitz domain in Rd−1

for all regular Lipschitz charts k of ∂Ω.
The boundary ∂Γ0 is then called strongly Lipschitz boundary.

Note that it is sufficient that the image of Γ0 under k (in the previous definition)
is strongly Lipschitz for a set of regular Lipschitz charts, whose chart domains cover
Γ0 (or even just ∂Γ0).

Definition 2.3. We call (Ω,Γ0) a strongly Lipschitz pair, if Ω is a strongly Lipschitz
domain and Γ0 ⊆ ∂Ω is strongly Lipschitz.

Note that if Γ0 ⊆ ∂Ω is strongly Lipschitz, then also Γ1 := ∂Ω \ Γ0 is strongly
Lipschitz. Hence, if (Ω,Γ0) is a strongly Lipschitz pair, then also (Ω,Γ1) is.

Since we only deal with strongly Lipschitz domains and boundaries, we will omit
the term “strongly” and just say Lipschitz domain and Lipschitz boundary.

Recall the definition of a H1 function on the boundary of a Lipschitz domain, see
e.g., [Skr23a].

Definition 2.4. Let Ω ⊆ Rd be a Lipschitz domain. We say f ∈ L2(∂Ω) is in
H1(∂Ω), if for every Lipschitz chart k : Γ → U the mapping

f ◦ k−1 is in H1(U).

3. Density results for W (Ω)

Definition 3.1. Let Ω ⊆ Rd be a Lipschitz domain. Then we define

W (Ω) :=
{
f ∈ H1(Ω)

∣∣ γ0f ∈ H1(∂Ω)
}
,

∥f∥W (Ω) :=
(
∥f∥2H1(Ω) + ∥γ0f∥2H1(∂Ω)

)1/2

.

The next lemma a is a crucial tool in our construction. The basic idea is: Take a
smooth function with compact support on a flat domain (U ⊆ Rd−1) extend it on
the entire hyperplane Rd−1 by 0, and then extend is constantly in the orthogonal
direction, i.e., f(ζ + λed) = f(ζ), where λ ∈ R and ed is the d-th unit vector. A
multiplication with a cutoff function makes sure that this extension has compact
support. By rotation and translation this can be done for arbitrary hyperplanes.
Figure 2 illustrates the construction.

Lemma 3.2. Let k : Γ → U be a Lipschitz chart, f ∈ H1(∂Ω) with compact support

in Γ′ ⊆ Γ. Then there exists an F ∈ H1(Rd)∩W (Ω)∩H̊1
∂Ω\Γ′(Ω) such that F

∣∣
∂Ω

= f .

Moreover, there exists a sequence (Fn)n∈N in C̊∞
∂Ω\Γ′(Rd) that converges to F w.r.t.

∥·∥H1(Rd)+∥·∥W (Ω), i.e., Fn converges to F in H1(Rd) and Fn

∣∣
∂Ω

converges to F
∣∣
∂Ω

in H1(∂Ω).
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0

supp f̂

suppχ

Ω

∂Ω

p
supp f

Cϵ,h(p)

W

“suppχ”

Figure 2. Illustration of the construction of Lemma 3.2

Proof. Let p, W and v be the point, hyperplane and normal vector, respectively, to
the chart k. In particular k−1 is given by

k−1 :

{
U ⊆ Rd−1 → Γ,

x 7→ p+Wx+ a(x)v,

where U is open and a is the Lipschitz function. Let χ ∈ C̊∞(R) be a cut-off function
such that

χ(λ) ∈


{1}, |λ| < 3/2∥a∥∞,

[0, 1], |λ| ∈ (3/2, 2)∥a∥∞,

{0}, |λ| > 2∥a∥∞.

1

2∥a∥∞3/2∥a∥∞

χ

By definition f̂ = f ◦ k−1 is in H1(U) and since f has compact support in Γ′ we

conclude f̂ ∈ H̊1(U) with support in U ′ := k(Γ′) Note that we can extend f̂ ∈ H̊1(U)
on Rd by 0. We define

F (ζ) = χ(v · (ζ − p))f̂
(
WT(ζ − p)

)
for ζ ∈ Rd

The support of F is inside of a rotated and translated version of U ′ × suppχ, in
particular

suppF ⊆ p+
[
W v

]
U ′ × suppχ =: Ξ.

Note that by construction of χ we have suppF ∩ ∂Ω ⊆ Γ′, therefore F
∣∣
∂Ω\Γ′ =

0. Since f̂ ∈ H1(Rd−1) it is straight forward that F possess L2(Rd) directional
derivatives in W directions. Moreover, by construction (and the Leibniz product

rule) ∂
∂vF = χ′f̂(WT(·−p)), which implies F ∈ H1(Rd). By definition of a Lipschitz

chart we have |v · (ζ − p)| ≤ ∥a∥∞ for ζ ∈ Γ and hence

F (ζ) = χ(v · (ζ − p))︸ ︷︷ ︸
=1

f̂(WT(ζ − p)) = f̂ ◦ k(ζ) = f(ζ) for ζ ∈ Γ

(a.e. w.r.t. the surface measure).



6 N. SKREPEK AND D. PAULY

By assumption on f̂ there exists a sequence (f̂n)n∈N in C̊∞(U) that converges to

f̂ w.r.t. ∥·∥H1(U). Note that f̂n is also in C̊∞(Rd−1). We define

Fn(ζ) = χ(v · (ζ − p))f̂n
(
WT(ζ − p)

)
for ζ ∈ Rd

Note that Fn is the composition of C∞ mappings and therefore in C∞(Rd). Again,
the support of Fn is contained in the bounded set Ξ and therefore compact, which

implies Fn ∈ C̊∞(Rd). Note that Fn ◦ k−1 = f̂n, which implies (Fn ◦ k−1)n∈N
converges to f̂ w.r.t. ∥·∥H1(U). Since Fn

∣∣
∂Ω\Γ = 0 = F

∣∣
∂Ω\Γ we conclude Fn

∣∣
∂Ω

→
F
∣∣
∂Ω

in H1(∂Ω). Finally,

∥Fn − F∥H1(R3) ≤ ∥χ′∥∞∥(f̂n − f̂)(WT(· − p))∥H1(Ξ)

≤ 2∥a∥∞∥χ′∥∞∥f̂n − f̂∥H1(U) → 0. ❑

We will formulate a generalization of [BBBCD97, 2. Preliminaries].

Theorem 3.3. C̊∞
Γ (Rd) is dense in W (Ω) ∩ H̊1

Γ(Ω) w.r.t. ∥·∥W (Ω).

Proof. Since Ω is a Lipschitz domain we find for every p ∈ ∂Ω a cylinder Cϵ,h(p) (ϵ
and h depend on p) and a Lipschitz chart k : ∂Ω ∩ Cϵ,h(p) → Bϵ(0) ⊆ Rd−1.

Hence we can cover ∂Ω by
⋃

p∈∂Ω Cϵ,h(p) and by compactness of ∂Ω there are

already finitely many pi, i ∈ {1, . . .m} such that

∂Ω ⊆
m⋃
i=1

Cϵi,hi
(pi)︸ ︷︷ ︸

=:Ωi

We employ a partition of unity and obtain (αi)
m
i=1, subordinate to this cover, i.e.,

αi ∈ C̊∞(Ωi), αi(ζ) ∈ [0, 1], and

m∑
i=1

αi(ζ) = 1 for all ζ ∈ ∂Ω.

For f ∈ W (Ω) ∩ H̊1
Γ(Ω) we define fi := αif . It is straightforward to show fi ∈

W (Ω) ∩ H̊1
Γ(Ω). For every Ωi there is a Lipschitz chart ki : Γi → Ui ⊆ Rd−1, where

Γi = ∂Ω ∩ Ωi. Moreover, fi
∣∣
∂Ω

has support in Γi ∩ Γ∁, where Γ∁ = (∂Ω \ Γ).
By Lemma 3.2 there is an Fi ∈ H1(Rd) ∩W (Ω) ∩ H̊∂Ω\(Γi∩Γ∁) such that Fi

∣∣
∂Ω

=

fi
∣∣
∂Ω

and a sequence (Fi,n)n∈N in C̊∞
∂Ω\(Γi∩Γ∁)

(Rd) ⊆ C̊∞
Γ (Rd) that converges to Fi

in H(Rd) and in W (Ω). Hence, we have

f −
m∑
i=1

Fi ∈ H̊1(Ω),

which can be approximated by (F0,n)n∈N in C̊∞(Ω). Hence,
(∑m

i=0 Fi,n

)
n∈N is a

sequence in C̊∞
Γ (Rd) and converges to f in W (Ω). ❑

4. Density result with homogeneous part

In this section we will finally define the Sobolev spaces with homogeneous and
L2 partial tangential traces, respectively, and prove one of our main theorems. We
assume Ω ⊆ R3 to be a Lipschitz domain.

We will use a weak definition for the tangential trace and twisted tangential trace
as, e.g., in [PS22b].

Definition 4.1. Let Ω be a Lipschitz domain and Γ ⊆ ∂Ω open (in ∂Ω).
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• We say f ∈ H(curl,Ω) has a L2
τ (Γ) tangential trace, if there exists a q ∈ L2

τ (Γ)
such that

⟨f, curlϕ⟩L2(Ω) − ⟨curl f, ϕ⟩L2(Ω) = ⟨q, γτϕ⟩L2
τ (Γ)

∀ϕ ∈ C̊∞
∂Ω\Γ(R

3).

In this case we say πτf ∈ L2
τ (Γ) and πτf = q on Γ or more precisely πΓ

τ f = q.

• We say f ∈ H(curl,Ω) has a L2
τ (Γ) twisted tangential trace, if there exists a

q ∈ L2
τ (Γ) such that

⟨curl f, ϕ⟩L2(Ω) − ⟨f, curlϕ⟩L2(Ω) = ⟨q, πτϕ⟩L2
τ (Γ)

∀ϕ ∈ C̊∞
∂Ω\Γ(R

3).

In this case we say γτf ∈ L2
τ (Γ) and γτf = q on Γ or more precisely γΓ

τ f = q.

Note that the previous definition does not say anything about πτf on ∂Ω \ Γ.

Remark 4.2. Note that ν × γτϕ = −πτϕ and ⟨q, γτϕ⟩L2
τ (Γ)

= ⟨ν × q, ν × γτϕ⟩L2
τ (Γ)

.

Hence, we can easily see that πτf ∈ L2(Γ) is equivalent to γτf ∈ L2(Γ) and
γτf = ν × πτf .

Definition 4.3. Let Ω be a Lipschitz domain and Γ ⊆ ∂Ω open (in ∂Ω). Then we
define the space

ĤΓ(curl,Ω) := {f ∈ H(curl,Ω) |πτf ∈ L2
τ (Γ)}

with its norm

∥f∥ĤΓ(curl,Ω)
:=

(
∥f∥2L2(Ω) + ∥curl f∥2L2(Ω) + ∥πτf∥2L2(Γ)

)1/2

.

For Γ = ∂Ω we will just write Ĥ(curl,Ω) instead of Ĥ∂Ω(curl,Ω).

Definition 4.4. Let Ω be a Lipschitz domain and Γ ⊆ ∂Ω open (in ∂Ω). Then we
define the space

H̊Γ(curl,Ω) = {f ∈ ĤΓ(curl,Ω) |πΓ
τ f = 0}.

For Γ = ∂Ω we will just write H̊(curl,Ω) instead of H̊∂Ω(curl,Ω).

In [BPS16, Thm. 4.5] it is shown that C̊∞
Γ (Ω) is dense in H̊Γ(curl,Ω) w.r.t.

∥·∥H(curl,Ω), i.e.,

H̊Γ(curl,Ω) = C̊∞
Γ (Ω)

H(curl,Ω)

Hence, for homogeneous tangential traces there is already a version of the desired
density result.

Note that the hat on top of the H indicates partial L2 boundary conditions and
the circle on top indicates partial homogeneous boundary conditions.

Remark 4.5. We can immediately see

H̊Γ(curl,Ω) ⊆ ĤΓ(curl,Ω).

Since πτf ∈ L2(Γ) is equivalent to γτf ∈ L2(Γ) we have

ĤΓ(curl,Ω) = {f ∈ H(curl,Ω) | γτf ∈ L2(Γ)},
Since πτf = γτf × ν, we have ∥πτf∥L2(Γ) = ∥γτf∥L2(Γ) and

∥f∥ĤΓ(curl,Ω) =
(
∥f∥2L2(Ω) + ∥curl f∥2L2(Ω) + ∥γτf∥2L2(Γ)

)1/2
.

Remark 4.6. Since we use representation in an inner product, one can say that
we have defined ĤΓ(curl,Ω) weakly. Another approach could have been to regard

C̊∞(R3)
ĤΓ(curl,Ω)

, which could be called a strong approach. From this perspective
the result we are going to show basically tells us that the weak and the strong
approach to H(curl,Ω) fields that possess a L2

τ (Γ) tangential trace coincide.
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From now on we assume that (Ω,Γ0) is a Lipschitz pair. Recall the decomposition
(1):

H̊Γ0(curl,Ω) = H̊1
Γ0
(Ω) +∇H̊1

Γ0
(Ω).

Note that every element in H̊1
Γ0
(Ω) is already in Ĥ(curl,Ω)∩ H̊Γ0(curl,Ω). Moreover,

by [BPS16, Lmm. 3.1] C̊∞
Γ0
(R3) is dense in H̊1

Γ0
(Ω) w.r.t. ∥·∥H1(Ω) and therefore also

w.r.t. ∥·∥Ĥ(curl,Ω).

Hence, it is left to show that every

f ∈ ∇H̊1
Γ0
(Ω) ∩ Ĥ(curl,Ω)

can be approximated by a C̊∞
Γ0
(R3) function (w.r.t. ∥·∥Ĥ(curl,Ω)).

The following result is basically [Skr23a, Thm. 4.2].

Lemma 4.7. Let f ∈ H̊1
Γ0
(Ω) such that ∇f ∈ Ĥ(curl,Ω) (in particular πτ∇f ∈

L2
τ (∂Ω)). Then πτ∇f = ∇τf

∣∣
∂Ω

and f ∈ W (Ω) ∩ H̊1
Γ0
(Ω).

Proof. Since ∇f ∈ Ĥ(curl,Ω), we know that πτ∇f ∈ L2(∂Ω) which implies f
∣∣
∂Ω

∈
H1(∂Ω) and ∇τf

∣∣
∂Ω

= πτ∇f , see [Skr23a, Thm. 4.2]. Therefore, we conclude
f ∈ W (Ω). ❑

This brings us to our first main theorem.

Theorem 4.8. C̊∞
Γ0
(R3) is dense in Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω) w.r.t. ∥·∥Ĥ(curl,Ω).

Proof. Let f ∈ Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω) be arbitrary. Then we can decompose f

into f = f1 + f2, where f1 ∈ H̊1
Γ0
(Ω) and f2 ∈ Ĥ(curl,Ω) ∩∇H̊1

Γ0
(Ω).

By [BPS16, Lmm. 3.1] f1 can be approximated by C̊∞
Γ0
(R3) functions w.r.t.

∥·∥H1(Ω) and therefore also w.r.t. ∥·∥Ĥ(curl,Ω).

By Lemma 4.7 we know that f2 ∈ W (Ω) ∩ H̊1
Γ0
(Ω). Hence, we can apply

Theorem 3.3 and obtain a sequence (f2,n)n∈N that converges to f2 w.r.t. ∥·∥W (Ω).
This gives

∥∇f2 −∇f2,n∥2Ĥ(curl,Ω)

= ∥∇(f2 − f2,n)∥2L2(Ω) + ∥curl∇(f2 − f2,n)︸ ︷︷ ︸
=0

∥2L2(Ω) + ∥πτ∇(f2 − f2,n)∥2L2(∂Ω)

≤ ∥f2 − f2,n∥2H1(Ω) +
∥∥f2∣∣∂Ω − f2,n

∣∣
∂Ω

∥∥2
H1(∂Ω)

= ∥f2 − f2,n∥2W (Ω) → 0,

which finishes the proof. ❑

5. Density result without homogeneous part

Since we already know that C̊∞
Γ0
(R3) is dense in Ĥ(curl,Ω) ∩ H̊Γ0

(curl,Ω), we

can show the density of C̊∞(R3) in ĤΓ1
(curl,Ω) by a duality argument, which we

will present in this section. This argument can be done in just a few lines within
the notion of quasi Gelfand triples [Skr23b]. However, in order to stay relatively
elementary we extract the essence and build a proof that avoids the introduction of
this notion.

Basically we mimic the abstract boundary space for the tangential trace by
H̊(curl,Ω)⊥, which can also be viewed as the boundary space as it is isometrically
isomorphic.

Our standing assumption in this section is that (Ω,Γ0) is Lipschitz pair and
Γ1 := ∂Ω \ Γ0.
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Corollary 5.1. If f ∈ ĤΓ1
(curl,Ω), then

⟨γτf, πτg⟩L2(Γ1) = ⟨curl f, g⟩L2(Ω) − ⟨f, curl g⟩L2(Ω)

for all g ∈ Ĥ(curl,Ω) ∩ H̊Γ0
(curl,Ω).

Proof. For f ∈ ĤΓ1
(curl,Ω) we have by definition

⟨γτf, πτg⟩L2(Γ1) = ⟨curl f, g⟩L2(Ω) − ⟨f, curl g⟩L2(Ω)

for all g ∈ C̊∞
Γ0
(R3). Since this equation is continuous in g w.r.t. ∥·∥Ĥ(curl,Ω),

we can extend it by continuity to g ∈ C̊∞
Γ0
(R3)

Ĥ(curl,Ω)

and by Theorem 4.8 to

g ∈ Ĥ(curl,Ω) ∩ H̊Γ0
(curl,Ω). ❑

Lemma 5.2. We have the following identity

H̊(curl,Ω)⊥ = {f ∈ H(curl,Ω) | curl curl f = −f},
where the orthogonal complement is taken in H(curl,Ω), i.e., w.r.t. ⟨·, ·⟩H(curl,Ω).

Moreover, curl leaves the space H̊(curl,Ω)⊥ invariant.

Proof. Note that by density of C̊∞(Ω) in H̊(curl,Ω) both spaces have the same
orthogonal complement. Hence,

f ∈ H̊(curl,Ω)⊥ ⇔ 0 = ⟨f, g⟩L2(Ω) + ⟨curl f, curl g⟩L2(Ω) ∀ g ∈ C̊∞(Ω)

⇔ curl f ∈ H(curl,Ω) and curl curl f = −f. ❑

Lemma 5.3. Let P the orthogonal projection on H̊(curl,Ω)⊥ (in H(curl,Ω)). Then

Ĥ(curl,Ω) ∩ H̊Γ0
(curl,Ω) is invariant under P , i.e., f ∈ Ĥ(curl,Ω) ∩ H̊Γ0

(curl,Ω)

implies Pf ∈ Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω).

Proof. Since I − P is the orthogonal projection on H̊(curl,Ω) and H̊(curl,Ω) is a

subspace of Ĥ(curl,Ω) ∩ H̊Γ0
(curl,Ω), we conclude that (I − P )f ∈ Ĥ(curl,Ω) ∩

H̊Γ0(curl,Ω) for every f ∈ H(curl,Ω). Now for every f ∈ Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω)
we have

Pf = f − (I− P )f,

which is in Ĥ(curl,Ω)∩H̊Γ0
(curl,Ω), since Ĥ(curl,Ω)∩H̊Γ0

(curl,Ω) is a subspace. ❑

Lemma 5.4. For every q ∈ πτ

(
Ĥ(curl,Ω) ∩ H̊Γ0

(curl,Ω)
)
there exists a g ∈

H̊(curl,Ω)⊥ such that

curl g ∈ Ĥ(curl,Ω) ∩ H̊Γ0
(curl,Ω) ∩ H̊(curl,Ω)⊥ and πτ curl g = q.

In particular,

πτ

(
Ĥ(curl,Ω) ∩ H̊Γ0

(curl,Ω)
)
= πτ

(
Ĥ(curl,Ω) ∩ H̊Γ0

(curl,Ω) ∩ H̊(curl,Ω)⊥
)
.

Proof. By assumption we have q = πτf for f ∈ Ĥ(curl,Ω) ∩ H̊Γ0
(curl,Ω). Let

P denote the orthogonal projection on H̊(curl,Ω)⊥. Then by Lemma 5.3 we can
decompose f into f = Pf + (I − P )f , where both Pf and (I − P )f are also in

Ĥ(curl,Ω)∩H̊Γ0(curl,Ω). Moreover, (I−P )f ∈ H̊(curl,Ω), which gives πτ (I−P )f = 0
and therefore

q = πτf = πτPf.

Since Pf ∈ H̊(curl,Ω)⊥, we have curl curlPf = −Pf . Thus defining g = − curlPf
finishes the proof. ❑

Now we finally come to our second main theorem.

Theorem 5.5. C̊∞(R3) is dense in ĤΓ1(curl,Ω) w.r.t. ∥·∥ĤΓ1
(curl,Ω).
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Proof. By the definition of the norm of ĤΓ1
(curl,Ω) the mapping γτ : ĤΓ1

(curl,Ω) ⊆
H(curl,Ω) → L2

τ (Γ1) is closed. We define the following restriction of γτ

γ̂τ :

{
C̊∞(R3) ⊆ H(curl,Ω) → L2

τ (Γ1),
f 7→ γτf.

Since γ̂τ ⊆ γτ we conclude
γ̂τ

∗ ⊇ γ∗
τ .

1. Step:Calculate dom γ̂τ
∗. Let q ∈ dom γ̂τ

∗. Then there exists a g ∈ H(curl,Ω)
such that

⟨γ̂τf, q⟩L2(Γ1) = ⟨f, g⟩H(curl,Ω) = ⟨f, g⟩L2(Ω) + ⟨curl f, curl g⟩L2(Ω) (2)

for all f ∈ C̊∞(R3). For f ∈ C̊∞
Γ1
(R3), we obtain

0 = ⟨f, g⟩L2(Ω) + ⟨curl f, curl g⟩L2(Ω),

which implies curl g ∈ H̊Γ0
(curl,Ω) and curl curl g = −g, and by Lemma 5.2 g ∈

H̊(curl,Ω)⊥. Hence, we revisit (2), where we extend q by 0 outside of Γ1 in ∂Ω

⟨γ̂τf, q⟩L2(∂Ω) = −⟨f, curl curl g⟩L2(Ω) + ⟨curl f, curl g⟩L2(Ω)

for all f ∈ C̊∞(R3), which implies curl g ∈ Ĥ(curl,Ω) and q = πτ curl g. Conse-
quently,

dom γ̂τ
∗ ⊆ πτ

(
Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω) ∩ H̊(curl,Ω)⊥

)
= πτ

(
Ĥ(curl,Ω) ∩ H̊Γ0

(curl,Ω)
)
.

2. Step:Calculate dom γ∗
τ . If q ∈ πτ

(
Ĥ(curl,Ω)∩ H̊Γ0

(curl,Ω)
)
, then by Lemma 5.4

there exists a g ∈ H̊(curl,Ω)⊥ such that curl g ∈ Ĥ(curl,Ω) ∩ H̊Γ0
(curl,Ω) and

πτ curl g = q. Hence, by Corollary 5.1 for f ∈ ĤΓ1
(curl,Ω) and curl g we have

⟨γτf, γτ curl g︸ ︷︷ ︸
=q

⟩L2(Γ1) = ⟨curl f, curl g⟩L2(Ω) − ⟨f, curl curl g︸ ︷︷ ︸
=−g

⟩L2(Ω) = ⟨f, g⟩H(curl,Ω),

which implies q ∈ dom γ∗
τ . Consequently,

dom γ∗
τ ⊇ πτ

(
Ĥ(curl,Ω) ∩ H̊Γ0

(curl,Ω)
)
.

3. Step: Combining the results of the previous steps yields

πτ

(
Ĥ(curl,Ω) ∩ H̊Γ0(curl,Ω)

)
⊇ dom γ̂τ

∗

⊇ dom γ∗
τ ⊇ πτ

(
Ĥ(curl,Ω) ∩ H̊Γ0

(curl,Ω)
)
.

Hence, γ̂τ
∗ = γ∗

τ and therefore

γ̂τ = γ̂τ
∗∗ = γ∗∗

τ = γτ ,

which implies C̊∞(R3) is dense in ĤΓ1(curl,Ω) w.r.t. the graph norm of γτ with is
∥·∥ĤΓ1

(curl,Ω). ❑

6. Conclusion

We have defined H(curl,Ω) fields that possess an L2 tangential trace on Γ1 ⊆ ∂Ω
via a weak approach (by representation in the L2(Γ1) inner product) and showed
that the C∞ fields are dense in this space. This is a generalization of [BBBCD97],
where the case Γ1 = ∂Ω was regarded. In fact for partial tangential traces there
is the second question about the density with additional homogeneous boundary
conditions on Γ0 = ∂Ω \ Γ1. This was exactly the open problem in [WS13, Sec. 5],
which we could solve. In particular they were asking whether H1

Γ0
(Ω) is dense in

Ĥ(curl,Ω) ∩ H̊Γ0
(curl,Ω), which is in fact a weaker version of Theorem 4.8.
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