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Ratens lehrten. Ich danke auch meinem Bruder Raphael dafür, dass er als
Vorbild und

”
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Introduction

In this thesis we develop a framework for linear port-Hamiltonian systems (PHS)
on multidimensional spatial domains that justifies existence and uniqueness of
solutions. The inner dynamic of those systems can be described by the following
equations

∂

∂t
x(t, ζ) =

n∑
i=1

∂

∂ζi
PiH(ζ)x(t, ζ) + P0H(ζ)x(t, ζ), ζ ∈ Ω, t ≥ 0,

x(0, ζ) = x0(ζ), ζ ∈ Ω,

(1)

where x is the state, Pi and P0 are matrices, H is the Hamiltonian density, and
Ω is an open subset of Rn with bounded Lipschitz boundary. We will restrict

ourselves to the case, where the matrices Pi have the block shape
[

0 Li

LH
i 0

]
for

i ∈ {1, . . . , n}.
We also introduce “natural” boundary controls and observations, the so

called ports, which make the system a scattering passive (energy preserving) or
impedance passive (energy preserving) boundary control system

u(t, ζ) = B(ζ)H(ζ)x(t, ζ), ζ ∈ ∂Ω, t ≥ 0,

y(t, ζ) = C(ζ)H(ζ)x(t, ζ), ζ ∈ ∂Ω, t ≥ 0.

Moreover, we are interested in stability/stabilizability of such systems. As
showcase we regard the wave equation. However, we conclude what has to be done
for general port-Hamiltonian systems. Amongst others a compact embedding of
the domain of the differential operator is necessary. We will also show that the
Maxwell operator with mixed non-homogeneous boundary conditions satisfies
this.

The partial differential equation (PDE) in (1) perfectly matches the descrip-
tion of port-Hamiltonian systems in one spatial dimension in the book of Jacob

and Zwart [25], if we set n = 1. The additional restriction P1 =
[

0 L1

LH
1 0

]
is

not needed in [25], since the boundary of a line automatically satisfies certain
symmetry properties. We decided to not demand an analogous symmetry from
Ω in the multidimensional case, because it did not seem very restrictive to ask

for Pi =
[

0 Li

LH
i 0

]
as all the examples satisfy this anyway. However, it is probably

possible to drop this restriction and ask instead for a certain symmetry of the

ix



x INTRODUCTION

boundary. The references [25, 61] treat the existence and uniqueness of solutions
for these port-Hamiltonian systems with a one-dimensional spatial domain.

The port-Hamiltonian formulation has proven to be a powerful tool for
the modeling and control of complex multiphysics systems. Port-Hamiltonian
systems encode the underlying physical principles such as conservation laws
directly into the structure of the system. An introductory overview can be found
in [59]. This theory originates from Bernhard M. Maschke and Arjan van der
Schaft [36]. For finite-dimensional systems there is by now a well-established
theory [58, 14, 13]. The port-Hamiltonian approach has been further extended to
the infinite-dimensional situation, see e.g. [60, 30, 32, 26, 67, 61, 25, 28]. In [28]
the authors showed that the port-Hamiltonian formulation of the wave equation
in n spatial dimensions possesses unique mild and classical solutions.

Chapter 8 of the Ph.D. thesis [61] also regards such port-Hamiltonian systems
that have multidimensional spatial domains, but the results demand very strong
assumptions on the boundary operators (they have to map into H1/2(∂Ω)k and
its dual respectively), which are not satisfied in case of Maxwell’s equations and
the Mindlin plate model, as Example 5.1.8 shows for Maxwell’s equations. With
the following approach we will overcome these limits.

The strategy is to find a boundary triple associated to the differential operator.
The multidimensional integration by parts formula∫

Ω

〈 n∑
i=1

∂

∂ζi
Lix(ζ), y(ζ)

〉
dζ +

∫
Ω

〈
x(ζ),

n∑
i=1

∂

∂ζi
LH
i y(ζ)

〉
dζ

=

∫
∂Ω

〈 n∑
i=1

νi(ζ)Lix(ζ), y(ζ)
〉
dζ,

where νi is the i-th component of the normal vector on the boundary of Ω,
already suggests possible operators for a boundary triple (we will show this
integrations by parts formula in Lemma 3.1.8). Unfortunately these operators
cannot be extended to the entire domain of the differential operator. Hence, we
need to adapt the codomain of these boundary operators, which will lead to
the construction of suitable boundary spaces for this problem. These boundary
spaces behave like a Gelfand triple with the original codomain as pivot space,
but lack of a chain inclusion.

To the author’s best knowledge there is no earlier theory about this setting.
So we will develop the notion of quasi Gelfand triples in Chapter 4, which equips
us with the tools to state the boundary condition in terms of the pivot space
instead of the artificially constructed boundary spaces (Theorem 4.4.6).

One can think of using a quasi boundary triple (G,Γ0,Γ1) (see [7]) to overcome
the extension problem of the boundary mappings, but unfortunately the condition
ker Γ0 is self-adjoint (or in this setting skew-adjoint) is in general not satisfied
for our class of systems.

The approach to the wave equation in [28] perfectly fits the framework
presented in this thesis. In fact, many ideas from [28] are generalized in this
work. Also Maxwell’s equations can be formulated as such a port-Hamiltonian
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system and the results in [64] can also be derived with the tools of this framework.
Moreover, this theory can be applied on the model of the Mindlin plate in [8, 33].
In Chapter 6 we give examples of how this framework can be applied to these
three PDEs.

The core of this thesis has been published in form of an article, see [54].
However, in this thesis we have enough space to deepen some aspects and give
extra information. Chapter 7 and Chapter 8 are the result of the papers [24]
and [46], respectively.

We start this thesis with some preliminaries. In particular we give a short
introduction to distributions and Lipschitz boundaries to be self-contained (up
to a certain point) and precise. Then we will introduce a (maybe not entirely
standard) concept of dualities of Banach spaces and adjoint operators, that
covers both Banach spaces and Hilbert spaces at once. Moreover, this enables us
to easily switch between a Banach space adjoint and a Hilbert space adjoint. In
this work we work with linear operators from the point of view of linear relations,
which is a generalization of linear operators. They can be seen as multi-valued
linear operators. This concept is presented in Chapter 2.

Finally, in Chapter 3 we define port-Hamiltonian systems and the corre-
sponding differential operators. We take care of all the technical details of these
differential operators. Furthermore, we give relevant examples of this class of
PDEs.

In order to develop a suitable solutions theory for these systems we create
the concept of quasi Gelfand triple in Chapter 4. These triples behave essentially
like Gelfand triples, but lack of a chain inclusion. Afterwards in Chapter 5 we
construct suitable boundary spaces for our port-Hamiltonian differential operator
that establish a quasi Gelfand triple with L2(∂Ω) as pivot space. This enables
us to formulate boundary conditions that admit existence and uniqueness of
solutions. Thus, at this point we reach one goal of the thesis.

In Chapter 6 we regard the port-Hamiltonian system with an input and an
output function as a boundary control and observation system. We will see that
certain choices of these inputs and outputs result in well-posed boundary control
and observation systems.

We will apply a scattering passive feedback to the wave equation in Chapter 7
and show that this stabilizes the wave equation in a semi-uniform way. This also
implies strong stability of the closed loop system. As a by-product we show that
the differential operator of this system possesses a compact resolvent.

Finally in Chapter 8 we show a compact embedding of the domain of Max-
well’s equations with mixed and non-homogeneous boundary conditions. This
can be used to show that the “pure dynamic” (displacement from an equilibrium)
of Maxwell’s equation is described by an operator with compact resolvent.
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Important for Cherry
Pickers

Here are a few things that might help readers that are only interested in selected
chapters.

• We use linear relations instead of operators, i.e. every linear operator
A : X → Y will be also treated as linear relation. This means that you will
often find something like [ xy ] ∈ A, which just means Ax = y. This nuance
is sometimes helpful.

• We will always regard the antidual space instead of the dual space. This
prevents unnecessary inconveniences when switching between a dual pairing
and an inner product.

• We define the adjoint with respect to a dual pair. This allows us to treat
Banach space adjoints and Hilbert space adjoints with the same framework.

Figure 1 illustrates the dependencies of the chapters. A dashed arrow indicates
that it is also understandable without the previous chapters, but some results of
the previous chapters might be used.

xiii
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Chapter 1

Preliminaries

Sometimes it can be confusing to pay attention to the antilinear structure of
an inner product of a Hilbert space, when switching between the inner product
and the dual pairing. Thus, for the sake of clarity we will always consider the
antidual space instead of the dual space, which is the space of all continuous
antilinear mappings from the topological vector space into its scalar field. Hence,
both the inner product and the (anti)dual pairing is linear in one component
and antilinear in the other.

1.1 Distributions

In this section we want to recall the definition of the space of distributions and
the most important results. For detailed information see [66, ch. I, sec. 8] or [22,
ch. II].

Let Ω be an open subset of Rn. Before we can introduce distributions we
have to introduce the space of test functions on Ω. We define

D(Ω) := C∞
c (Ω) := {ϕ ∈ C∞(Ω) | suppϕ is compact in Ω}.

We use the notation D(Ω) instead of C∞
c (Ω), because we will endow this space

with a special topology. Note that this space is dense in Lp(Ω) for every p ∈ [1,∞).
For a multi-index α ∈ Nn

0 we define |α| :=
∑n

i=1 αi and

Dαϕ :=
∂|α|

∂xα1
1 . . . ∂xαn

n
ϕ.

We want to give an idea of the topology, but for a precise discussion we refer
to [22, 66]. For Ω ⊆ Rn open and K ⊆ Ω we define

DK(Ω) := {ϕ ∈ D(Ω) | suppϕ ⊆ K}.

On DK(Ω) we can define the semi norms

pm(ϕ) := sup
|α|≤m

sup
x∈K
|Dαϕ(x)|, m ∈ N0.

1



2 CHAPTER 1. PRELIMINARIES

These semi norms establish a topology on DK(Ω), with which DK(Ω) is a locally
convex topological vector space. We have

D(Ω) =
⋃

K⊆Ω compact

DK(Ω).

and we will endow D(Ω) with the finest locally convex topology such that all
inclusion mappings ιK : DK(Ω)→ D(Ω), f 7→ f are continuous.

We can characterize convergence in D(Ω) by ϕn → ϕ, if and only if

• there exists a compact K ⊆ Ω such that supp(ϕn − ϕ) ⊆ K for all n ∈ N

• and supx∈K |Dα(ϕn − ϕ)(x)| → 0 for all α ∈ Nn
0 .

Definition 1.1.1. We define the space of distributions D′(Ω) as the (anti)dual
space of test functions D(Ω). For Λ ∈ D′(Ω) and ϕ ∈ D(Ω) we define

⟨Λ, ϕ⟩D′(Ω),D(Ω) := Λ(ϕ).

We will write just ⟨Λ, ϕ⟩D′,D, if Ω is clear and ⟨Λ, ϕ⟩, if it can’t be confused with
another dual pairing.

Remark 1.1.2. Every f ∈ L1loc(Ω) can be regarded as a distribution by

⟨f, ϕ⟩D′(Ω),D(Ω) =

∫
Ω

fϕdλ,

where λ denotes the Lebesgue measure. Since suppϕ ⊆ Ω, we can replace the
integral over Ω by an integral over Rn, if we extend f outside of Ω with 0. A
distribution that can be represented by an f ∈ L1loc(Ω) via the previous integral
is called regular.

Inspired by the integration by parts formula we define DαΛ for a distribution.

Definition 1.1.3. Let Λ ∈ D′(Ω) we define the distributional derivative DαΛ
pointwise for every ϕ ∈ D(Ω) by

⟨DαΛ, ϕ⟩D′(Ω),D(Ω) = (−1)|α|⟨Λ,Dαϕ⟩D′(Ω),D(Ω).

Note that a distribution is arbitrarily often differentiable (in the distributional
sense).

Example 1.1.4. We define the Heaviside function Hf : R→ R by

Hf(x) =

{
0, x ≤ 0,

1, x > 0.

Clearly, Hf = 1(0,+∞). Its distributional derivative can be calculated by

⟨H′
f , ϕ⟩D′(R),D(R) = −

∫
R
Hfϕ′ dλ = −

∫ +∞

0

ϕ′(x) dx = −ϕ(x)
∣∣∣+∞

0
= ϕ(0)

where ϕ ∈ D(R). Note that δ0 : ϕ 7→ ϕ(0) is continuous and antilinear, and
therefore an element of D′(R).
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Lemma 1.1.5. Let (fm)m∈N be a sequence in L1loc(Ω) that converges pointwise
to f ∈ L1loc(Ω) such that for every compact K ⊆ Ω there exists an integrable
function gK such that |fm(x)| ≤ gK(x) for a.e. x ∈ K. Then fm converges to f
in D′(Ω), i.e.

lim
m→∞

⟨fm, ϕ⟩ = ⟨f, ϕ⟩ for all ϕ ∈ D(Ω).

Proof. Let ϕ ∈ D(Ω) be arbitrary. Then suppϕ is compact and therefore
there exists an integrable function gsuppϕ such that |fm(x)| ≤ gsuppϕ(x) for a.e.
x ∈ suppϕ. Hence, by Lebesgue’s dominated convergence theorem, we have

lim
m→∞

|⟨fm − f, ϕ⟩| = lim
m→∞

∣∣∣∣∫
Ω

(fm − f)ϕdλ
∣∣∣∣

≤ ∥ϕ∥∞ lim
m→∞

∫
suppϕ

|fm − f |dλ = 0. ❑

Lemma 1.1.6. Let (Λm)m∈N be a sequence in D′(Ω) that converges to Λ ∈ D′(Ω)
in D′(Ω). Then DαΛm converges to DαΛ in D′(Ω) for every α ∈ Nn

0 .

Proof. Let ϕ ∈ D(Ω). Note that also Dαϕ ∈ D(Ω). Hence,

⟨Dα(Λm − Λ), ϕ⟩ = (−1)|α|⟨Λm − Λ,Dαϕ⟩ → 0. ❑

Note that every Lipschitz continuous function f : Ω→ R possesses an almost
everywhere defined derivative by Rademacher’s theorem, see [1, th. 2.14]. More-
over, if we restrict it on a line in Ω, then this function is absolutely continuous.
Hence, by the fundamental theorem of calculus for absolutely continuous function
we can derive an integration by parts formula for every ϕ ∈ D(Ω) by integrating

∂

∂xi
(fϕ) =

( ∂

∂xi
f
)
ϕ+ f

( ∂

∂xi
ϕ
)

over R. Consequently the distributional derivative Dαf coincides with ∂
∂xi

f as
distribution for α = ei, where ei is the n-tuple that with 1 in the i-th entry and
0 else.

1.2 Lipschitz Boundary

In this thesis we will only deal with strong Lipschitz boundaries, hence we will
not mention weak Lipschitz boundaries and we will just use the term Lipschitz
boundary for strong Lipschitz boundary. Sets with Lipschitz boundaries are nice
enough to allow to define an outer normal vector, which will be important to
define boundary operators. More details can be found in [21].

Definition 1.2.1. A set Ω ⊆ Rn is said to have a Lipschitz boundary, if for
every p ∈ ∂Ω there exists an ϵ, h > 0, a hyper plane H in p and a Lipschitz
continuous function g : H ∩Bϵ(p)→ R such that

∂Ω ∩ Cϵ,h = {x+ g(x)v |x ∈ H ∩Bϵ(p)},
Ω ∩ Cϵ,h = {x+ yv |x ∈ H ∩Bϵ(p),−h < y < g(x)},
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pv

H

Bϵ(p)

Cϵ,h

Ω

Figure 1.1: Lipschitz boundary

where v is the normal vector on H and Cϵ,h is the cylinder {x + ηv |x ∈
H ∩Bϵ(p), η ∈ (−h, h)}.

Figure 1.1 illustrates this definition. Locally the boundary of Ω is the graph
of a Lipschitz function. Alternatively, you can regard the hyper plane and its
normal vector as an orthogonal basis (a different coordinate system). Sometimes
this is used to define Lipschitz boundaries. The condition on Ω ∩ Cϵ,h makes
sure that the surface of Ω is orientable.

Locally we can define an embedding on a Lipschitz boundary by

ϕ :

{
Bϵ(p) ∩H → ∂Ω,

x 7→ x+ g(x)v.

Clearly, since Bϵ(p)∩H is isomorphic to a ball Bϵ(0) in Rn−1, we can also define
a Lipschitz continuous embedding ϕ̃, whose domain is Bϵ(0) ⊆ Rn−1.

Note that for x ∈ Bϵ(p) the vector x−⟨x−p, v⟩v ∈ H and we can characterize
the boundary locally at p by the zeros of

F :

{
Bϵ(p) → R,

x 7→ ⟨x− p, v⟩ − g
(
x− ⟨x− p, v⟩v

)
.

In the coordinate system given by H and v (origin in p) this function can be
expressed by

F̃ :

{
Bϵ(p) → R,[

ζ
ξ

]
7→ ξ − g̃(ζ),

where g̃ is an appropriate modification of g. Since g is Lipschitz continuous, also
F is Lipschitz continuous.

By Rademacher’s theorem [1, th. 2.14] every Lipschitz function is almost
everywhere differentiable. Hence, we can define tangential space on almost every
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point of ∂Ω and an outward pointing normal vector. Let (bi)
n−1
i=1 be a basis of

H. Then the tangential space of ∂Ω in almost every q is given by

span

{
∂

∂b1
ϕ
(
ϕ−1(q)

)
, . . . ,

∂

∂bn−1
ϕ
(
ϕ−1(q)

)}
, (1.1)

or

span

{
∂

∂e1
ϕ̃
(
ϕ̃−1(q)

)
, . . . ,

∂

∂en−1
ϕ̃
(
ϕ̃−1(q)

)}
,

where (ei)
n
i=1 is the standard basis of Rn. It can be shown that the tangential

space does not depend on the embedding ϕ, i.e. if ψ is another embedding such
that q is in the image of ψ, then the corresponding tangential space w.r.t. ψ is
the same.

Lemma 1.2.2. The normal vector is given (almost everywhere) by

ν :

{
∂Ω ∩Bϵ(p) → Rn,

q 7→ (dF (q))T

∥dF (q)∥ .

Proof. Let q ∈ ∂Ω ∩ Bϵ(p) such that the tangential space exists. By (1.1){
∂

∂b1
ϕ
(
ϕ−1(q)

)
, . . . , ∂

∂bn−1
ϕ
(
ϕ−1(q)

)}
is a basis of the tangential space. Hence,

we only have to show that ν(q) is orthogonal on each basis vector. Let s = ϕ−1(q).
Then 〈

dF (q)T,
∂ϕ

∂bi
(ϕ−1(q))

〉
= dF (q)

∂ϕ

∂bi
(ϕ−1(q)) = dF (ϕ(s))

∂ϕ

∂bi
(s)

=
∂

∂bi
(F ◦ ϕ)(s) = 0,

which proves the claim. ❑

By working in the coordinate system centered in p given by an orthogonal
basis of H and v we can assume

H = span{e1, . . . , en−1} and v = en. (1.2)

Moreover, we will identify H with Rn−1, which allows us to write the embedding
ϕ as

ϕ(x) =

[
x
g(x)

]
.

Note that in this new coordinate system p = 0. Let q ∈ ∂Ω ∩Bϵ(p), π denotes

the orthogonal projection on H, which is given by x 7→ [ x1 x2 ... xn−1 ]
T
and

s = π(q). Then the tangential space in q can by written as

span




1
0
...
0

∂g(s)
∂e1

 ,


0
1
...
0

∂g(s)
∂e2

 , . . . ,


0
0
...
1

∂g(s)
∂en−1
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or in a matrix form

ran

[
En−1

dg(s)

]
,

where En−1 denotes the identity matrix in Rn−1. Hence, we can easily see that
the tangential space exists in every point where g(s) is differentiable. The normal
vector in Lemma 1.2.2 is then given by

ν(q) =
1√

1 + ∥∇g(s)∥2

[
−∇g(s)

1

]
Theorem 1.2.3. Let ν be the function given in Lemma 1.2.2. Then ν(q) points
outward Ω for almost every q ∈ ∂Ω ∩ Cϵ,h.

Figure 1.2 illustrates the proof.

H p

vq

s

∂Ω

Ω

a(s)

ν(q)

−∇g(s)

−|∇g(s)|2

Figure 1.2: Outer normal vector

Proof. Let q ∈ ∂Ω∩Cϵ,h such that the tangential space exists and s = π(q). For
an x ∈ H ∩Bϵ(p) we can express the corresponding point on surface of Ω by[

x
g(x)

]
.

Since g is differentiable in s, we have[
s− µ∇g(s)
g(s− µ∇g(s))

]
=

[
s
g(s)

]
− µ

[
∇g(s)
∥∇g(s)∥2

]
+

[
0

o(µ)

]
.

Hence, for µ > 0 sufficiently small we have g(s) ≥ g(s− µ∇g(s)), which implies[
s−µ∇g(s)

g(s)

]
/∈ Ω. Consequently,

q + µν(q) =

[
s
g(s)

]
+ µ

[
−∇g(s)

1

]
/∈ Ω.

Therefore, ν(q) points outward Ω. ❑
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Hence, there is a function ν : ∂Ω → Rn that is defined almost everywhere
(w.r.t. surface measure of ∂Ω) such that ν is an outward pointing normal vector.

We mentioned the surface measure of ∂Ω a few times without really saying
what it is. Hence, we catch up on this. The set of Borel sets on ∂Ω can be
described by

B(∂Ω) = B(Rn) ∩ ∂Ω = {A ∩ ∂Ω |A ∈ B(Rn)},

where B(Rn) are the Borel sets on Rn. We still assume (1.2). For simplicity we
will only define the surface measure on ∂Ω∩Cϵ,h, but this can easily be extended
on ∂Ω by a covering consisting of sets Cϵ,h centered in different points.

Definition 1.2.4. For A ∈ B(∂Ω) ∩ Cϵ,h we define the surface measure of ∂Ω
by

µ(A) :=

∫
g−1(πn(A))

√
1 + ∥∇g∥2 dλn−1.

where λn−1 denotes the Lebesgue measure in Rn−1 and πn denotes the projection
on the n-th coordinate.

Note that g−1(πn(A)) = ϕ−1(A). For a measurable function f we can
calculate the surface integral by∫

∂Ω∩Cϵ,h

f dµ =

∫
Bϵ(0)

f

([
x
g(x)

])√
1 + ∥∇g(x)∥2 dλn−1(x).

In order to prove the divergence theorem or Gauß’s theorem,∫
Ω

div f dλ =

∫
∂Ω

ν · f dµ,

we will prove locally
∫
Ω
∂iψ dλ =

∫
∂Ω
νiψ dµ and then obtain the global result

by a partition of unity. Finally, the divergence theorem/Gauß’s theorem is just
an easy consequence.

Theorem 1.2.5. Let ψ ∈ D(Cϵ,h). Then∫
Ω∩Cϵ,h

∂iψ dλ =

∫
∂Ω∩Cϵ,h

νiψ dµ

for every i ∈ {1, . . . , n}.

We will again (without loss of generality) assume (1.2).

Proof. Let h ∈ C∞(R) be such that

h(ζ) ∈


0, ζ ∈ (−∞, 0),
[0, 1], ζ ∈ [0, 1],

1, ζ ∈ (1,∞).
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−1 1

1
h

Figure 1.3: The function h

Figure 1.3 illustrates the function h. We define hm(x) := h(mx), which converges
pointwise to the Heaviside function Hf = 1(0,+∞). By the second condition of
Lipschitz boundaries, we have x ∈ Ω ∩ Cϵ,h if and only if xn < g(x̃), where
x̃ = π(x), the projection of x on the first n− 1 coordinates. Therefore, we can
write 1Ω for x ∈ Cϵ,h as a pointwise limit

1Ω(x) = lim
m→∞

hm(g(x̃)− xn) = lim
m→∞

h̃m(x),

where h̃m := hm(g(x̃)− xn). Hence 1Ω regarded as distribution, i.e. as element
of D′(Cϵ,h), is also the limit of h̃m (Lemma 1.1.5). The distributional derivative
of 1Ω can be written as (Lemma 1.1.6)

∂

∂xi
1Ω = lim

m→∞

∂

∂xi
h̃m, where

∂

∂xi
h̃m(x) = mwi(x̃)h

′(m(g(x̃)− xn))

and w(x̃) =
[
∇g(x̃)
−1

]
= −

√
1 + ∥∇g(x̃)∥2ν

([
x̃

g(x̃)

])
(for a.e. x). For ψ ∈ D(Cϵ,h)

we have∫
Ω∩Cϵ,h

∂iψ dλ = −
〈

∂

∂xi
1Ω, ψ

〉
D′(Cϵ,h),D(Cϵ,h)

= − lim
m→∞

∫
Rn−1

∫
R
mwi(x̃)h

′(m(g(x̃)− xn))ψ(
[

x̃
xn

]
) dxn dx̃

=

∫
Rn−1

wi(x̃)

∫
R

lim
m→∞

[ ∂

∂xn
h(mxn)

]
ψ
([

x̃
g(x̃)−xn

])
dxn dx̃

=

∫
Rn−1

wi(x̃)
〈
H′

f , ψ
([

x̃
g(x̃)−·

])〉
D′(R),D(R) dx̃

=

∫
Rn−1

νi
([

x̃
g(x̃)

])
ψ
([

x̃
g(x̃)

])√
1 + ∥∇g(x̃)∥2 dx̃

=

∫
∂Ω∩Cϵ,h

νiψ dµ. ❑

Lemma 1.2.6. Let K ⊆ Rn be a compact set and Ω ⊆ Rn open with Lipschitz
boundary. Then there exists an open covering (Oj)

k
j=0 of Ω ∩K, such that Oj

for j ≥ 1 are cylinders Cϵj ,hj
(pj) that fulfill the conditions in the definition of a

Lipschitz boundary (Definition 1.2.1) and O0 ⊆ Ω.
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Proof. By definition of a Lipschitz boundary for each p ∈ ∂Ω there exists a
cylinder Cϵ,h(p) (ϵ and h depend on p). Clearly,

⋃
p∈∂Ω∩K Cϵ,h(p) is an open

covering of the compact set ∂Ω∩K. Therefore, there exist finitely many pj such
that

k⋃
j=1

Cϵj ,hj
(pj) ⊇ ∂Ω ∩K.

We define Oj as Cϵj ,hj (pj) for every j ∈ {1, . . . , k}. Since the distance δ of

(Ω∩K) \
⋃k

j=1Oj to ∂Ω is positive, the δ
2 neighborhood B δ

2
((Ω∩K) \

⋃k
j=1Oj)

of (Ω∩K) \
⋃k

j=1Oj is contained in Ω. We define O0 as B δ
2
((Ω∩K) \

⋃k
j=1Oj).

Then (Oj)
k
j=0 is the desired open covering of Ω ∩K. ❑

Theorem 1.2.7. Let ψ ∈ D(Rn) and Ω ⊆ Rn be open with Lipschitz boundary.
Then ∫

Ω

∂iψ dλ =

∫
∂Ω

νiψ dµ

for every i ∈ {1, . . . , n}.

Proof. We apply Lemma 1.2.6 on K = suppψ. Then we have an open covering
Ω ∩K consisting of O0 ⊆ Ω and cylinder Oj = Cϵj ,hj

(pj) for j ∈ {1, . . . , k}. We
employ a partition of unity and obtain (αj)

k
j=0 subordinate to this covering, i.e.

αi ∈ D(Oj), αj(x) ∈ [0, 1], and

k∑
j=0

αj(x) = 1 for x ∈ Ω ∩K.

We define ψj = αjψ ∈ D(Oj). Hence, we have ψ =
∑k

j=0 ψj and

∫
Ω

∂iψ dλ =

∫
Ω∩K

∂i

k∑
j=0

ψj dλ =

k∑
j=0

∫
Ω∩Oj

∂iψj dλ.

Note that
∫
Ω∩O0

∂iψ0 dλ =
∫
O0
∂iψ0 dλ =

∫
Rn ∂iψ0 dλ = 0. Therefore, by Theo-

rem 1.2.5 we have

k∑
j=0

∫
Ω∩Oj

∂iψj dλ =

k∑
j=1

∫
Ω∩Oj

∂iψj dλ =

k∑
j=1

∫
∂Ω∩Oj

νiψj dµ =

∫
∂Ω

νiψ dµ,

which proves the claim. ❑

Theorem 1.2.8 (Gauß’s theorem). Let Ω ⊆ Rn be open with Lipschitz boundary
and f ∈ D(Rn)n. Then ∫

Ω

div f dλ =

∫
∂Ω

ν · f dµ.
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Proof. Note that fi ∈ D(Rn). Hence, by Theorem 1.2.7∫
Ω

div f dλ =

n∑
i=1

∫
Ω

∂ifi dλ =

n∑
i=1

∫
∂Ω

νifi dµ =

∫
∂Ω

ν · f dµ. ❑

This result can be extended to a more general class of functions by continuity,
e.g. H1(Ω)n, if Ω is bounded. Note that for an unbounded Ω this formula cannot
be extended to H1(Ω)n as shown in [57, Re. 13.7.4]. We will later use this
result to introduce an integration by parts formula for a certain class of L2(Ω)
functions.

1.3 Dual Pairs

In this section we will introduce the notion of dual pairs, that allows us to treat
dualities for Hilbert spaces and for Banach spaces in the same framework.

Definition 1.3.1. Let X and Y be Banach spaces and let ⟨·, ·⟩Y,X : Y ×X → C
be continuous and sesquilinear (linear in the first argument and antilinear in the
second argument). We define

Φ:

{
Y → X ′,
y 7→ ⟨y, ·⟩Y,X ,

and Ψ:

{
X → Y ′,

x 7→ ⟨·, x⟩Y,X .

If Φ is isometric and bijective, then we say that (X,Y ) is a (anti)dual pair and
⟨·, ·⟩Y,X is its (anti)dual pairing.

We define

⟨x, y⟩X,Y := ⟨y, x⟩Y,X ,

which is again a sesquilinear form.
If also Ψ is isometric and bijective, then we say that (X,Y ) is a complete

(anti)dual pair.

Remark 1.3.2. Since Φ is isometric, the duality mapping of a dual pair (X,Y )
satisfies

|⟨y, x⟩Y,X | ≤ ∥y∥Y ∥x∥X .

Example 1.3.3. There are some “natural” and well-known dual pairs.

• Let X be a Banach space, then (X,X ′) is a dual pair by the dual pairing

⟨y, x⟩X′,X := y(x).

If X is additionally reflexive, then (X,X ′) is even a complete dual pair.

• Let H be a Hilbert space, then (H,H) is a complete dual pair by its inner
product

⟨y, x⟩H,H := ⟨y, x⟩H .
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• Let p ∈ [1,+∞), X = Lp(Ω) and Y = Lq(Ω), where 1
p + 1

q = 1. Then

(X,Y ) is a dual pair with the dual pairing

⟨y, x⟩Y,X :=

∫
Ω

yxdλ.

For p ̸= 1 it is even a complete dual pair. Note that this is not a special
case of the first example as Lq(Ω) is “only” isomorphic to the dual space
of Lp(Ω).

Clearly, every dual pair (X,Y ) can be identified with (X,X ′). However,
sometimes such identifications can make things a little bit confusing. Especially
for Hilbert spaces H it is (in most cases) more “natural” to regard the dual pair
(H,H) instead of (H,H ′). Nevertheless, sometimes also for Hilbert spaces it is
more convenient to regard another dual pair, e.g. for the Sobolev space H1(R)
it is more handy to work with H−1(R). Furthermore, if you deal with both the
dual pairs (H,H) and (H,H ′) simultaneously, then it is less confusing, if you
are able to properly distinguish between them, even if the difference is only an
isomorphism.

Unfortunately, building this theory is a little bit harder than doing duality
theory only for Hilbert spaces, but on the plus side it gives a framework in which
the duality of Banach spaces and Hilbert spaces is the same. This is especially
an advantage, when it comes to adjoint mappings.

If we do not explicitly choose a dual pair, we work with (X,X ′), if X is
a Banach space and (H,H) if H is a Hilbert space.

Remark 1.3.4. If (X,Y ) is a complete dual pair, then (Y,X) is also a complete
dual pair. A Banach space X is reflexive, if and only if there exists a Banach
space Y such that (X,Y ) is a complete dual pair.

Definition 1.3.5. For a dual pair (X,Y ) we define a sesquilinear form on X×Y
by

⟪
[
x1
x2

]
,

[
y1
y2

]
⟫

X×Y

:= ⟨x2, y1⟩Y,X + ⟨x1, y2⟩X,Y

We call this sesquilinear form the Stokes-Dirac product. We will just write
⟪·, ·⟫, if the space is clear. If we regard canonical dual pairs like (X,X ′) or
(H,H) for a Hilbert space H we will sometime just write ⟪·, ·⟫X and ⟪·, ·⟫H ,
respectively. We say similar to inner products [ x1

x2
] ⊥⟪,⟫ [ y1

y2 ], if ⟪[ x1
x2

], [ y1
y2 ]⟫ = 0

and correspondingly [ x1
x2

] ⊥⟪,⟫ M and N ⊥⟪,⟫ M for sets M,N ⊆ X ×X ′.

Lemma 1.3.6. Let (X,Y ) be a dual pair. Then ⟪·, ·⟫ is a non-degenerated
sesquilinear form, i.e. (X × Y )⊥⟪,⟫ = {0}.

Proof. Let [ x1
x2

] ∈ X × Y be such that [ x1
x2

] ⊥⟪,⟫ X × Y . Then, in particular,

[ x1
x2

] ⊥⟪,⟫
[
0
y

]
for all y ∈ Y , which means 0 = ⟪[ x1

x2
],
[
0
y

]⟫ = ⟨x1, y⟩X,Y . This
implies x1 = 0, since (X,Y ) is a dual pair. Analogously, we can show that
x2 = 0. ❑
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Clearly, for a complete dual pair (X,Y ) it is easy to show that (X×Y, Y ×X)
is a complete dual pair. However, the next lemma shows that there is another
complete dual pairing for X × Y , which comes from an indefinite inner product.
We endow X × Y with ∥[ x1

x2
]∥X×Y :=

√
∥x1∥2X + ∥x2∥2Y .

Lemma 1.3.7. Let (X,Y ) be a complete dual pair. Then (X × Y,X × Y ) with
⟪·, ·⟫X×Y is a complete dual pair.

Proof. Since this is a duality between the space X × Y and itself, it is enough
to show that

Φ:

{
X × Y → (X × Y )′,

[ x1
x2

] 7→ ⟪[ x1
x2

], ·⟫X×Y

is isometric and bijective.
Let [ x1

x2
], [ y1

y2 ] ∈ X×Y . Then by the triangle inequality and Cauchy Schwarz’s
inequality∣∣∣∣⟪[x1x2

]
,

[
y1
y2

]
⟫
∣∣∣∣ = ∣∣⟨x2, y1⟩Y,X + ⟨x1, y2⟩X,Y

∣∣ ≤ ∥x2∥Y ∥y1∥Y + ∥x1∥X∥y2∥Y

≤
√
∥x2∥2Y + ∥x1∥2X ·

√
∥y1∥2X + ∥y2∥2Y

=

∥∥∥∥[x1x2
]∥∥∥∥

X×Y

∥∥∥∥[y1y2
]∥∥∥∥

X×Y

.

On the other hand for x1 ∈ X there exits a y2 ∈ Y with ∥y2∥ = ∥x1∥ such that
⟨x1, y2⟩ = ∥x1∥2 and for x2 ∈ Y there exists a y1 ∈ Y with ∥y1∥ = ∥x2∥ such
that ⟨x2, y1⟩ = ∥x2∥2 (this is a consequence of the Hahn Banach theorem and
the fact that (X,Y ) is a complete dual pair). Hence,∣∣∣∣⟪[x1x2

]
,

[
y1
y2

]
⟫
∣∣∣∣ = ∥x1∥2X + ∥x2∥2Y =

∥∥∥∥[x1x2
]∥∥∥∥2

X×Y

=

∥∥∥∥[x1x2
]∥∥∥∥

X×Y

∥∥∥∥[y1y2
]∥∥∥∥

X×Y

,

which implies ∥Φ[ x1
x2

]∥(X×Y )′ = ∥[ x1
x2

]∥X×Y .
To show surjectivity let f ∈ (X × Y )′ be arbitrary. Then

f([ y1
y2 ]) = f([ y1

0 ]) + f(
[

0
y2

]
).

Since both parts can be seen as elements of X ′ and Y ′, we find x2 ∈ Y and
x1 ∈ X such that

f([ y1
y2 ]) = ⟨x2, y1⟩Y,X + ⟨x1, y2⟩X,Y = ⟪[ x1

x2
], [ y1

y2 ]⟫.
Consequently, Φ[ x1

x2
] = f . ❑

Definition 1.3.8. Let (X,Y ) be a dual pair, M ⊆ X and N ⊆ Y . Then we
define the annihilators of M and N by

M⊥Y := {y ∈ Y | ⟨y, x⟩Y,X = 0 ∀x ∈M},
⊥XN := {x ∈ X | ⟨y, x⟩Y,X = 0 ∀y ∈ N}.

We will just write M⊥ and ⊥N , if the dual pair is clear. If (X,Y ) is a complete
dual pair we also write N⊥ for ⊥N .
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Note that for a complete dual pair (X,Y ) also (Y,X) is a complete dual pair.
Hence, the notation N⊥X for ⊥XN is justified for N ⊆ Y as both describe the
same set.

The next theorem is a translation of [53, Theorem 4.7] in our notation.
Nevertheless we will present a proof.

Proposition 1.3.9. Let (X,Y ) be a complete dual pair, and M ⊆ X and N ⊆ Y
be subspaces. Then

M⊥⊥ =M and N⊥⊥ = N.

Proof. It is sufficient to show M⊥⊥ = M as the second assertion follows from
the first applied to the complete dual pair (Y,X).

It is obvious that M ⊆ M⊥⊥ and since M⊥⊥ is closed, we conclude M ⊆
M⊥⊥. On the other hand, if x /∈M , then we can separate x and M by a Hahn-
Banach theorem ([53, Theorem 3.5]) with a functional ψ such that ψ(x) = 1 and
ψ(M) = 0. This ψ can be represented by ⟨y, ·⟩Y,X for a y ∈ Y . This y satisfies
y ∈M⊥ and ⟨y, x⟩Y,X ̸= 0, therefore x /∈M⊥⊥. ❑
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Chapter 2

Linear Relations

In this chapter we will introduce linear relations, which can be seen as a gen-
eralization of linear operators or as multi-valued linear operators. Although
it may be possible to completely avoid this concept, it is worth to use it, as
otherwise proofs can become cumbersome and some interesting links will stay
hidden. We will introduce well-known concepts like adjoints, skew-symmetry,
dissipativity and the Cayley transform for linear relations. Then we will present
the most important results on boundary triples (for our purposes). Finally, we
recall strongly continuous semigroups and in particular contraction semigroups.

2.1 Basics

Definition 2.1.1. Let X,Y be two vector spaces over the same scalar field.
Then we will call a subspace T of X × Y a linear relation between X and Y . A
linear relation between X and X will be called a linear relation on X.

Remark 2.1.2. Every linear operator T : X → Y can be identified by a linear
relation by considering the graph of T . In fact, if we consider mappings from X
to Y as subsets of X × Y then T is already a linear relation. On the other hand
not every linear relation comes from an operator, as {0} × Y demonstrates the
most degenerate example.

The statement [ xy ] ∈ T can be interpreted as Tx“=”y, if T comes from a
linear operator, this is also its literal meaning. However, for a general linear
relation y is not uniquely determined by x. So from a multi-valued operator
perspective this can be interpreted as y ∈ Tx.

Definition 2.1.3. For a linear relation T between the vector spaces X and Y
we define

• domT := {x ∈ X | ∃ y ∈ Y such that [ xy ] ∈ T} the domain of T ,

• ranT := {y ∈ Y | ∃x ∈ X such that [ xy ] ∈ T} the range of T ,

15
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• kerT := {x ∈ X | [ x0 ] ∈ T} the kernel of T ,

• mulT := {y ∈ Y |
[
0
y

]
∈ T} the multi-value-part of T .

We say T is single-valued or a linear operator, if mulT = {0}.

Remark 2.1.4. Every linear relation T which satisfies mulT = {0} can be
regarded as a linear mapping T defined on domT , where Tx = y is well defined
by [ xy ] ∈ T .

Definition 2.1.5. Let X,Y, Z be vector spaces and S, T be linear relations
between X and Y , and R a linear relation between Y and Z.

• S + T := {[ x
y1+y2 ] ∈ X × Y | [

x
y1 ] ∈ S and [ x

y2 ] ∈ T},

• λT := {[ x
λy ] ∈ X × Y | [ xy ] ∈ T},

• T−1 := {[ yx ] ∈ Y ×X | [ xy ] ∈ T},

• RS := {[ xz ] ∈ X × Z | ∃ y ∈ Y such that [ xy ] ∈ S and [ yz ] ∈ R}.

It is easy to check that the sets defined in the previous definition are also linear
relations. Furthermore, if S, T and R are linear operators, then the previous
definition coincide with the usual definition of addition, scalar multiplication,
inverse and composition.

Definition 2.1.6. For a Banach space (X, ∥·∥) and a linear relation A on X,
we define

• ρ(A) := {λ ∈ C ∪ {∞} | (A− λ)−1 ∈ Lb(X)} as the resolvent set,

• σ(A) := (C ∪ {∞}) \ ρ(A) as the spectrum,

• σp(A) := {λ ∈ C ∪ {∞} | ker(A− λ)−1 ̸= {0}} as point spectrum, and

• r(A) := {λ ∈ C ∪ {∞} | (A− λ)−1 ∈ Lb(ran(A− λ), X)} as the points of
regular type,

where ran(A− λ) is endowed with the norm of X and we set (T −∞)−1 := T
and ran(T −∞) := domT .

Note that definition of (A−∞)−1 is just to ensure that ∞ ∈ σ(A), if A is
unbounded.

Definition 2.1.7. Let X be a vector space over C and M =
[
α β
γ δ

]
∈ C2×2,

then we define the mapping τM : X ×X → X ×X by

τM

[
x
y

]
:=

[
δI γI
βI αI

] [
x
y

]
=

[
δx+ γy
βx+ αy

]
.

Lemma 2.1.8. For M,N ∈ C2×2 we have τMτN = τMN and therefore, for
invertible M also τM−1 = τM

−1.
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Proof. Note that

τM

[
x
y

]
=

[
0 1
1 0

]
M

[
0 1
1 0

] [
x
y

]
.

Hence,

τMτN =

[
0 1
1 0

]
M

[
0 1
1 0

] [
0 1
1 0

]
N

[
0 1
1 0

]
=

[
0 1
1 0

]
MN

[
0 1
1 0

]
= τMN .

From the already shown, we can immediately conclude that τM−1 = τ−1
M . ❑

Lemma 2.1.9. Let A be a linear relation on a vector space X and M =
[
α β
γ δ

]
∈

C2×2. If mulA = {0}, then

τM (A) = (αA+ βI)(γA+ δI)
−1
.

Proof. Let [ ab ] ∈ τM (A). Then there exists a [ xy ] ∈ A such that [ ab ] =
[

δx+γy
βx+αy

]
.

By the definition of the addition and multiplication by a scalar for linear relations
we have [ x

αy+βx ] ∈ (αA + βI), [ x
γy+δx ] ∈ (γA + δI) and therefore [ γy+δx

x ] ∈
(γA+ δI)−1. Consequently [ ab ] ∈ (αA+ βI)(γA+ δI)−1.

On the other hand let [ ab ] ∈ (αA + βI)(γA + δI)−1. Then there exists a
x ∈ domA such that [ ax ] ∈ (γA+δI)−1 and [ xb ] ∈ (αA+βI). Since mulA = {0},
there exists a unique y ∈ X such that [ xy ] ∈ A. Hence, a = γy + δx and
b = αy + βx and consequently [ ab ] ∈ τM (A). ❑

Remark 2.1.10. For M =
[
α β
γ δ

]
∈ C2×2 with detM ̸= 0 we have the Möbius

transformation

ϕM (z) =
αz + β

γz + δ
= (αz + β)(γz + δ)−1.

By Lemma 2.1.9, we can see that ϕM (A) := (αA+ β)(γA+ δ)−1 = τM (A) for
any linear relation A with mulA = {0}.

Hence, the previous definition of τM (A) can be seen as the Möbius transfor-
mation of a linear relation.

2.2 Adjoint Linear Relations

We will introduce a slightly more general approach to the adjoint of a linear
relation (or operator). This is again a nuance coming from a proper distinction
of identifications of dual spaces. Clearly, all adjoints for different (isomorphic)
dual spaces are isomorphic in some sense, nevertheless this differentiation can
sometimes reveal details, that are otherwise hard to spot.

Definition 2.2.1. Let (X1, Y1), (X2, Y2) be dual pairs and A a linear relation
between X1 and X2. Then we define the adjoint linear relation by

A∗Y2×Y1 :=

{[
y2
y1

]
∈ Y2 × Y1

∣∣∣∣ ⟨y2, x2⟩Y2,X2
= ⟨y1, x1⟩Y1,X1

for all

[
x1
x2

]
∈ A

}
.
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We will just write A∗, if the dual pairs are clear.
For a Banach space X, we will regard the dual pair (X,X ′) for the adjoint,

if no other dual pair is given. Similar, for a Hilbert space H we will regard the
dual pair (H,H), if no other dual pair is given.

Remark 2.2.2. Let H1, H2 be Hilbert spaces and let us regard the natural
complete dual pairs (H1, H1) and (H2, H2). Then the adjoint of a densely
defined linear operator A : H1 → H2 can be characterized by[

y2
y1

]
∈ A∗ ⇔ ⟨y2, Ax⟩H2

= ⟨y1, x⟩H1
for all x ∈ domA.

This matches the usual definition of a Hilbert space adjoint, if we regard y1 as
A∗y2

⟨y2, Ax⟩H2 = ⟨A∗y2, x⟩H1 .

In fact we will later see that for a densely defined linear relation its adjoint is an
operator.

In the operator case the next lemma is sometimes used as the definition of
domA∗.

Lemma 2.2.3. Let A be an operator (mulA = {0}). Then we can characterize
the domain of A∗ by

x ∈ domA∗ ⇔ domA ∋ u 7→ ⟨x,Au⟩Y2,X2 is continuous w.r.t. ∥·∥X1 .

Proof. If x ∈ domA∗, then there exists (at least one) y ∈ Y1 such that

⟨x,Au⟩Y2,X2
= ⟨y, u⟩Y1,X1

for all u ∈ domA.

Hence, u 7→ ⟨x,Au⟩Y2,X2 is bounded by ∥y∥Y1 and therefore continuous.
If ϕ : domA→ C, u 7→ ⟨x,Au⟩Y2,X2 is continuous, then we can extend this

mapping by continuity on domA. By Hahn-Banach we can further continuously
extend this on X1 (not necessarily uniquely), denoted by ϕ̂. Since (X1, Y1) is a

dual pair, there exists a y ∈ Y1 such that ϕ̂(·) = ⟨y, ·⟩Y1,X1
. Hence,

⟨x,Au⟩Y2,X2
= ϕ̂(u) = ⟨y, u⟩Y1,X1

which implies [ xy ] ∈ A∗ and x ∈ domA∗. ❑

Lemma 2.2.4. Let (X1, Y1), (X1, Z1), (X2, Y2) and (X2, Z2) be dual pairs and
Ψ1 : Y1 → Z1 and Ψ2 : Y2 → Z2 be the isomorphisms between Y1 and Z1, and Y2
and Z2, respectively. Then we have for a linear relation A between X1 and X2

A∗Z2×Z1 =

[
Ψ2 0
0 Ψ1

]
A∗Y2×Y1 = Ψ1A

∗Y2×Y1Ψ−1
2 .
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Z1 Z2

X1 X2

Y1 Y2

Ψ1

A
∗Z2×Z1

Ψ2
A

Ψ−1
1

A
∗Y2×Y1

Ψ−1
2

Figure 2.1: A∗Z2×Z1 = Ψ1A
∗Y2×Y1Ψ−1

2

Proof. By the definition of the adjoint relation we have[
x
y

]
∈ A∗Y2×Y1 ⇔ ⟨x, v⟩Y2,X2

= ⟨y, u⟩Y1,X1
∀
[
u
v

]
∈ A

⇔ ⟨Ψ2x, v⟩Z2,X2
= ⟨Ψ1y, u⟩Z1,X1

∀
[
u
v

]
∈ A

⇔
[
Ψ2x
Ψ1y

]
∈ A∗Z2×Z1 .

This implies the claim. ❑

Remark 2.2.5. Let (X,Y ) be a complete dual pair. For a linear relation A
between X and Y we use the dual pairs (X,Y ) and (Y,X) such that the adjoint
relation A∗X×Y is also between X and Y . In this case we can characterize the
adjoint relation by[

y1
y2

]
∈ −A∗ ⇔ ⟪

[
x1
x2

]
,

[
y1
y2

]
⟫

X×Y

= 0 for all

[
x1
x2

]
∈ A,

or shorter by
−A∗ = A⊥⟪,⟫ .

Lemma 2.2.6. Let (X1, Y1), (X2, Y2) be dual pairs and let A be a linear relation
between X1 and X2. Then

• (−A)−1 = −A−1,

• (−A)⊥Y1×Y2 = −A⊥Y1×Y2 and

• (A−1)⊥Y2×Y1 = (A⊥Y1×Y2 )−1.

Proof. We show (−A)−1 = −A−1 by

[ xy ] ∈ (−A)−1 ⇔ [
y
−x ] ∈ A⇔ [−y

x ] ∈ A⇔ [ x
−y ] ∈ A−1 ⇔ [ xy ] ∈ −A−1.

The second assertion (−A)⊥ = −A⊥ follows from

[ xy ] ∈ (−A)⊥ ⇔ ⟨[ xy ], [ u
−v ]⟩Y1×Y2,X1×X2

= 0 ∀[ uv ] ∈ A
⇔ ⟨[ x

−y ], [
u
v ]⟩Y1×Y2,X1×X2

= 0 ∀[ uv ] ∈ A

⇔ [ xy ] ∈ −(A⊥).
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Finally, (A−1)⊥ = (A⊥)−1 can be seen by

[ xy ] ∈ (A−1)⊥ ⇔ ⟨[ xy ], [ vu ]⟩Y1×Y2,X1×X2
= 0 ∀[ uv ] ∈ A

⇔ ⟨[ yx ], [ uv ]⟩Y2×Y1,X2×X1
= 0 ∀[ uv ] ∈ A

⇔ [ xy ] ∈ (A⊥)−1. ❑

Proposition 2.2.7. Let (X1, Y1), (X2, Y2) be dual pairs and A a linear relation
between X1 and X2. Then we have the following identities

A∗ = ((−A)−1)⊥ = −(A−1)⊥ = −(A⊥)−1.

Moreover, A∗ is closed.

Proof. Note that

⟨y, u⟩Y1,X1
+ ⟨x, v⟩Y2,X2

= ⟨[ yx ], [ uv ]⟩Y1×Y2,X1×X2

Therefore we can reformulate the condition in the definition of A∗

A∗ =

{[
x
y

]
∈ Y2 × Y1

∣∣∣∣ 〈[−yx
]
,

[
u
v

]〉
= 0 for all

[
u
v

]
∈ A

}
= (−A⊥)−1.

The other characterizations follow from Lemma 2.2.6. The closedness follows
from the closedness of the annihilator. ❑

Lemma 2.2.8. Let (X1, Y1), (X2, Y2) and (X3, Y3) be dual pairs and A a linear
relation between X1 and X2. Then

(i) mulA∗ = (domA)⊥, kerA∗ = (ranA)⊥,

(ii) (BA)∗ ⊇ A∗B∗ for all linear relations B between X2 and X3,

(iii) (BA)∗ = A∗B∗ for all operators B ∈ Lb(X2, X3),

Proof.

(i) By the definition of A∗, we have

mulA∗ =
{
y ∈ Y2

∣∣ [ 0
y

]
∈ A∗} =

{
y ∈ Y2

∣∣ =0︷ ︸︸ ︷
⟨0, v⟩ = ⟨y, u⟩ for all [ uv ] ∈ A

}
= (domA)⊥,

kerA∗ =
{
x ∈ Y1

∣∣ [ x0 ] ∈ A∗} =
{
x ∈ Y1

∣∣ ⟨x, v⟩ = =0︷ ︸︸ ︷
⟨0, u⟩ for all [ uv ] ∈ A

}
= (ranA)⊥.

(ii) If [ xy ] ∈ A∗B∗, then there exist a z ∈ Y2 such that [ xz ] ∈ B∗ and [ zy ] ∈ A∗.
Moreover,

⟨x,w⟩Y3,X3
= ⟨z, v⟩Y2,X2

for all [ vw ] ∈ B,
⟨z, v⟩Y2,X2

= ⟨y, u⟩Y1,X1
for all [ uv ] ∈ A.

Hence, ⟨x,w⟩Y3,X3
= ⟨y, u⟩Y1,X1

for all [ uw ] ∈ BA and consequently [ xy ] ∈
(BA)∗.
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(iii) Since B is an everywhere defined operator, we can write BA = {[ u
Bv ] | [ uv ] ∈

A}. Therefore,

(BA)∗ =
{
[ xy ] ∈ Y3 × Y1

∣∣ ⟨x,Bv⟩Y3,X3 = ⟨y, u⟩Y1,X1 for all [ uv ] ∈ A
}
.

If [ xy ] ∈ (BA)∗, then

⟨B∗x, v⟩Y2,X2
= ⟨x,Bv⟩Y3,X3

= ⟨y, u⟩Y1,X1
for all [ uv ] ∈ A,

and in turn
[
B∗x
y

]
∈ A∗. Clearly, we also have [ x

B∗x ] ∈ B∗. Hence
[ xy ] ∈ A∗B∗.

❑

For complete dual pairs (X1, Y1) and (X2, Y2) the adjoint of a linear relation
A between X1 and X2 is defined by A∗ = A∗Y2×Y1 . However, we can also define
the adjoint of a linear relation B between Y2 and Y1 by B∗ = B∗X1×X2 as (Y2, X2)
and (Y1, X1) are also dual pairs. Therefore, we can take the double adjoint of A
which is

A∗∗ = (A∗Y2×Y1 )∗X1×X2 .

The next lemma will show that this is just the closure of A in X1 ×X2.

Lemma 2.2.9. Let (X1, Y1), (X2, Y2) be complete dual pairs and A a linear
relation between X1 and X2. Then

A∗∗ = A.

Proof. By the identities in Proposition 2.2.7 and Proposition 1.3.9 we have

A∗∗ =
(
− (A⊥)−1

)∗
=
((

(A⊥)−1
)−1
)⊥

= A⊥⊥ = A. ❑

In some sense a linear relation on a complete dual pair (X,Y ), i.e. A is a
linear relation between X and Y , is the closest thing to a linear relation on a
Hilbert space. Note that A∗ is again a linear relation between X and Y . Hence,
we can define things like symmetry.

Definition 2.2.10. Let (X,Y ) be a complete dual pair and A a linear relation
between X and Y . We call A

• symmetric, if A ⊆ A∗ and self-adjoint, if A = A∗.

• skew-symmetric, if A ⊆ −A∗ and skew-adjoint, if A = −A∗.

• dissipative, if Re⟨y, x⟩Y,X ≤ 0 for all [ xy ] ∈ A and maximal dissipative, if A
is dissipative and there is no proper dissipative extension of A.

• accretive, if −A is dissipative and maximal accretive, if −A is maximal
dissipative.
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Note that, if H is a Hilbert space and we regard the dual pair (H,H) and a
linear relation A between H and H, then the previous definition coincides with
the standard definition in the literature. However, for Banach spaces dissipativity
and accretivity are usually defined differently.

Remark 2.2.11. If A is symmetric/self-adjoint, then iA is skew-symmetric/skew-
adjoint. Conversely, if A is skew-symmetric/skew-adjoint, then iA is sym-
metric/self-adjoint.

Lemma 2.2.12. A self-adjoint operator A, i.e. A∗ = A and mulA = {0}, is
densely defined. A skew-adjoint operator B is densely defined.

Proof. By Lemma 2.2.8 we have

domA = (mulA)⊥ = {0}⊥ = X,

which proves the claim.
Clearly, this already implies the result for skew-adjoint operators, as iB is

self-adjoint. ❑

Lemma 2.2.13. A linear relation A is skew-symmetric, if and only if A is
dissipative and accretive, i.e. Re⟨x2, x1⟩Y,X = 0 for all [ x1

x2
] ∈ A.

For operators the condition can be read as Re⟨Ax, x⟩Y,X = 0. In other words
⟨Ax, x⟩Y,X ∈ iR.

Proof. Let Re⟨x2, x1⟩Y,X = 0. Note that ⟪[ x1
x2

], [ x1
x2

]⟫ = 2Re⟨x2, x1⟩Y,X . By the
polarization identity (Lemma A.3.1), we have

⟪
[
x1
x2

]
,

[
y1
y2

]
⟫ = 0 ∀

[
x1
x2

]
,

[
y1
y2

]
∈ A ⇔ ⟪

[
x1
x2

]
,

[
x1
x2

]
⟫ = 0 ∀

[
x1
x2

]
∈ A.

The right hand side of the equivalence is satisfied by assumption and the left
hand side implies by Remark 2.2.5 that −A ⊆ A∗.

If A is skew-symmetric, then [ x1
x2

] ∈ A implies [ x1
−x2

] ∈ A∗. Hence, by the
definition of the adjoint

⟨x2, x1⟩Y,X = ⟨x1,−x2⟩X,Y

and consequently ⟨x2, x1⟩Y,X + ⟨x2, x1⟩Y,X = 0, where the left hand side equals
the real part of ⟨x2, x1⟩Y,X . ❑

Remark 2.2.14. We can characterize skew-symmetry, dissipativity and accretivity
in the following way

A skew-symmetric ⇔ Re⟨y, x⟩ = 0 ∀[ xy ] ∈ A ⇔ ⟪[ xy ], [ xy ]⟫ = 0 ∀[ xy ] ∈ A,
A dissipative ⇔ Re⟨y, x⟩ ≤ 0 ∀[ xy ] ∈ A ⇔ ⟪[ xy ], [ xy ]⟫ ≤ 0 ∀[ xy ] ∈ A,
A accretive ⇔ Re⟨y, x⟩ ≥ 0 ∀[ xy ] ∈ A ⇔ ⟪[ xy ], [ xy ]⟫ ≥ 0 ∀[ xy ] ∈ A.
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2.3 Skew-symmetry and Dissipativity on Hilbert
Spaces

In the following we will regard linear relations on Hilbert spaces. Similar to
defect indices for symmetric operators we want to introduce the analogon for
skew-symmetric operators. We will discuss the spaces ran(A−λ) and ran(A+λ),
where Reλ ̸= 0. Note that contrary to the concept for symmetric operators
we regard a pair of complex numbers λ, −λ mirrored along the imaginary axis,
instead of the real axis. This is not surprising as the point spectrum of a
skew-symmetric operator is on the imaginary axis.

Lemma 2.3.1. Let A be a closed dissipative linear relation on a Hilbert space
X and λ ∈ C such that Reλ > 0. Then ran(A− λ) is closed in X.

Proof. Let [ xy ] ∈ A and [ xz ] ∈ (A−λ) such that z = y−λx. Note that (A−i Imλ)
is also a dissipative linear relation and therefore Re⟨y − i Imλx, x⟩ ≤ 0. Then
we have the following inequality

∥z∥2X = ∥y − λx∥2X = ∥y − i Imλx− Reλx∥2X

= ∥y − i Imλx∥2X − 2Reλ

≤0︷ ︸︸ ︷
Re⟨y − i Imλx, x⟩X︸ ︷︷ ︸

≥0

+ |Reλ|2∥x∥2X

≥ |Reλ|2∥x∥2X .

Let ([ xn
zn ])n∈N be a sequence in (A− λ) such that (zn)n∈N converges to z ∈ X.

Then the previous inequality implies that also (xn)n∈N converges to a limit x ∈ X.
Since A is closed (and therefore also (A− λ)), we conclude that [ xz ] ∈ (A− λ)
and consequently that ran(A− λ) is closed. ❑

Corollary 2.3.2. Let A be a closed skew-symmetric operator on a Hilbert space
X and λ ∈ C such that Reλ ̸= 0. Then ran(A− λ) is closed in X.

Proof. Note that A and −A are dissipative. Hence, for Reλ > 0 we apply
Lemma 2.3.1 on A and for Reλ < 0 we apply Lemma 2.3.1 on −A. ❑

Lemma 2.3.3. If A is a maximal dissipative linear relation on a Hilbert space
X, then (A− 1) is surjective, i.e. ran(A− 1) = X.

Proof. Note that ran(A − 1) is closed. Assume that (A − 1) is not surjective.
Then there is a non zero z ∈ X that is orthogonal on ran(A− 1), i.e.

0 = ⟨y − x, z⟩ = ⟨y, z⟩ − ⟨x, z⟩ for all [ xy ] ∈ A. (2.1)

If z ∈ domA, then, by the previous equation and the dissipativity of A, we have
for all [ zw ] ∈ A

Re∥z∥2 = Re⟨w, z⟩ ≤ 0.
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Therefore, z = 0, which contradicts our assumption z ≠ 0. On the other hand,
if z /∈ domA, then we extend A to B := span(A ∪ {[ z

−z ]}), which is again
dissipative. This can be seen by using (2.1)

Re⟨αz + x,−αz + y⟩ = −|α|2∥z∥2 +Re(⟨αz, y⟩ − ⟨x, αz⟩)︸ ︷︷ ︸
=0

+Re⟨x, y⟩ ≤ 0

for [ xy ] ∈ A. However, this contradicts the maximal dissipativity of A. Hence,
such a z cannot exist. ❑

Lemma 2.3.4. Let A be a closed skew-symmetric operator on a Hilbert space
and λ ∈ C such that Reλ ̸= 0. Then

domA∗ = domA∔ ran(A− λ)⊥ ∔ ran(A+ λ)⊥. (2.2)

Proof. We start showing that this sum is indeed direct. Let

f ∈ domA, g ∈ ran(A− λ)⊥︸ ︷︷ ︸
=ker(A∗−λ)

and h ∈ ran(A+ λ)⊥︸ ︷︷ ︸
=ker(A∗+λ)

be such that
f + g + h = 0. (2.3)

Applying A∗ − λ on this equations yields (A∗f = −Af and A∗h = −λh)

−(A+ λ)f − (λ+ λ)︸ ︷︷ ︸
=2Reλ

h = 0

By assumption the summands are orthogonal and Reλ ̸= 0, therefore

(A+ λ)f = 0 and h = 0.

Since A is skew-symmetric, only a pure imaginary number can be an eigenvalue
and consequently f = 0. Because of (2.3), we also see g = 0.

Finally, we show that there is equality in (2.2). Let u ∈ domA∗. Since
ran(A−λ) is closed by Corollary 2.3.2, we have X = ran(A−λ)⊕ (ran(A−λ))⊥.
Therefore, we can decompose

(A∗ + λ)u = u1 + u2, where u1 ∈ ran(A− λ), u2 ∈ (ran(A− λ))⊥.

We can write u1 = (A − λ)f for an f ∈ domA and u2 = (λ + λ)g, where
g = 1

λ+λ
u2 ∈ ker(A∗ − λ).

(A∗ + λ)u = (A− λ)f + (λ+ λ)g = −(A∗ + λ)f + (A∗ + λ)g.

Therefore, h := u+f −g ∈ ker(A∗+λ) = (ran(A+λ))⊥ and u = −f +g+h. ❑

Definition 2.3.5. Let X and Y be Hilbert spaces and A : X → Y be a linear
operator. Then we define the graph inner product by

⟨f, g⟩A := ⟨f, g⟩X + ⟨Af,Ag⟩Y .
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The corresponding graph norm is given by

∥f∥A =
√
∥f∥2X + ∥Af∥2Y .

It is easy to see that domA is a Hilbert space with the graph inner product, if
A is a closed operator (if A is closed in X × Y ).

Lemma 2.3.6. Let A be a closed skew-symmetric operator on an Hilbert space
X. If we regard domA∗ with the graph inner product of A∗, then we have the
following orthogonal decomposition

domA∗ = domA⊕A∗ ran(A− 1)⊥ ⊕A∗ ran(A+ 1)⊥,

where ran(A− 1)⊥ is still the orthogonal complement of ran(A− 1) in X.

Proof. By Lemma 2.3.4 for λ = 1 we know that the sum on the right hand side
spans all of domA∗. Hence, it is left to show that is an orthogonal sum.

Let f ∈ domA and g ∈ ran(A − λ)⊥ = ker(A∗ − λ). Then by assumption
A∗f = −Af and A∗g = λg, therefore

⟨f, g⟩A∗ = ⟨f, g⟩X + ⟨A∗f,A∗g⟩X = ⟨f, λ−1
A∗g⟩X − ⟨Af, λg⟩X

=
〈
f,
(
λ
−1 − λ

)
A∗g

〉
X
.

Hence, if λ = ±1, then we have orthogonality.
Let g ∈ ker(A∗ − 1) and h ∈ ker(A∗ + 1). Then

⟨g, h⟩A∗ = ⟨g, h⟩X + ⟨A∗g,A∗h⟩X = ⟨g, h⟩X + ⟨g,−h⟩X = 0,

which finishes the proof. ❑

Remark 2.3.7. Since domA∗ endowed with the graph inner product of A∗ is
isomorphic to A∗ as subspace of X ×X. Hence, by Lemma 2.3.6 we can also
decompose A∗ into

A∗ = A⊕A∗∣∣
ran(A−1)⊥

⊕A∗∣∣
ran(A+1)⊥

,

where the orthogonal sum is in X ×X.

Lemma 2.3.8. Let A be a densely defined, closed skew-symmetric operator on
a Hilbert space X. Then

⟨f, g⟩A∗ = ±⟪
[
f
A∗f

]
,

[
g
A∗g

]
⟫ for f ∈ domA∗, g ∈ ran(A− (±1))⊥

Proof. Let f ∈ domA∗ and g ∈ ran(A− (±1))⊥. Note that ran(A− (±1))⊥ =
ker(A∗ − (±1)). Therefore, we have g = ±A∗g and

⟨f, g⟩A∗ = ⟨f, g⟩X + ⟨A∗f,A∗g⟩X = ±⟨f,A∗g⟩X ± ⟨A∗f, g⟩X

= ±⟪
[
f
A∗f

]
,

[
g
A∗g

]
⟫. ❑
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Definition 2.3.9. Let A be a linear relation on a Hilbert space. Then we define
the Cayley transform of A by

C(A) := τM (A) =

{[
−x+ y
x+ y

] ∣∣∣∣ [xy
]
∈ A

}
, where M =

1√
2

[
1 1
1 −1

]
.

Remark 2.3.10.

• Note that the factor 1√
2
is only for cosmetic reason as ταM = τM for α ̸= 0.

• Note that the Cayley transform comes from the Möbius tranformation

ϕM (z) =
z + 1

z − 1
,

which maps the imaginary axis on the unit circle ring1 and the left half
plane on the interior of the unit circle2. Therefore, it will not come as a
surprise that the Cayley transform of a skew-adjoint operator is a unitary
operator and the Cayley transform of a dissipative linear relation is a
contractive operator.

• The inverse Cayley transform is given by

C−1(A) = C(A).

This can be easily seen by M2 = I and Lemma 2.1.8.

• If A is an operator then we can write the Cayley transform as

C(A) = (A+ 1)(A− 1)−1.

If additionally 1 /∈ σp(A), then C(A) is an operator.

Definition 2.3.11. We say a linear relation A between two Banach spaces X
and Y is contractive, if [

x
y

]
∈ A ⇒ ∥y∥Y ≤ ∥x∥X .

Note that every contractive linear relation A satisfies mulA = {0}, or in
other words A is an operator. This can be easily seen by[

0
y

]
∈ A ⇒ ∥y∥ ≤ 0.

Lemma 2.3.12. Let A be a dissipative linear relation on a Hilbert space. Then
its Cayley transform is a contractive operator. Conversely, the Cayley transform
of a contractive operator K is a dissipative linear relation.

1often denoted by T
2often denoted by D
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Note that a contractive operator does not have to be everywhere defined.

Proof. By definition, for [ uv ] ∈ C(A) there exits [ xy ] ∈ A such that[
u
v

]
=

[
−x+ y
x+ y

]
So we have

∥u∥2 = ∥x∥2 + ∥y∥2 − 2Re⟨x, y⟩
∥v∥2 = ∥x∥2 + ∥y∥2 + 2Re⟨x, y⟩.

Since A is dissipative, this implies ∥v∥ ≤ ∥u∥. Consequently C(A) is a contractive
linear relation, which is automatically an operator.

By definition,

C(K) =

{[
−x+ y
x+ y

] ∣∣∣∣ [xy
]
∈ K

}
=

{[
−x+Kx
x+Kx

] ∣∣∣∣x ∈ domK

}
Hence, for [ uv ] ∈ C(K) we have

Re⟨v, u⟩ = Re⟨x+Kx,−x+Kx⟩ = −∥x∥2+∥Kx∥2+Re(⟨x,Kx⟩ − ⟨Kx, x⟩)︸ ︷︷ ︸
=0

≤ 0,

because K is contractive. This gives the dissipativity of C(K). ❑

Lemma 2.3.13. Let K be a linear relation on a Hilbert space with mulK = {0}
(single-valued). Then

ker
[
1 +K 1−K

]
= C(K).

Proof. Let [ ab ] ∈ ker
[
1 +K 1−K

]
. Then

(K + 1)a = (K − 1)b.

Subtracting Kb and b on both sides gives

K(a− b) + (a− b) = −2b,

which implies
[
a−b
−2b

]
∈ (K + 1). Moreover

(K − 1)(a− b) = Ka− a− (K − 1)b︸ ︷︷ ︸
=(K+1)a

= −2a,

which implies
[

−2a
(a−b)

]
∈ (K − 1)−1. Hence,

[−2a
−2b

]
∈ (K + 1)(K − 1)−1 and by

linearity [ ab ] ∈ (K + 1)(K − 1)−1 = C(K).
For the reverse inclusion note

C(K) =

{[
−x+ y
x+ y

] ∣∣∣∣ [xy
]
∈ K

}
=

{[
−(1−K)
(1 +K)

]
x

∣∣∣∣x ∈ domK

}
.
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Therefore, if [ ab ] ∈ C(K), then

[
1−K 1 +K

] [a
b

]
=
[
1−K 1 +K

] [−(1 +K)
(1−K)

]
x = 0,

which proves the assertion. ❑

Theorem 2.3.14. The Cayley transform of a maximal dissipative linear relation
is an everywhere defined contractive operator and conversely the Cayley transform
of an everywhere defined contractive operator is a maximal dissipative linear
relation.

We could also say “maximal contractive operator” instead of “everywhere
defined”. In this notation the Cayley transform preserves maximality.

Proof. We only have to check whether the Cayley transform of these linear
relations are everywhere defined and maximal, respectively, as we have already
shown in Lemma 2.3.12, that the Cayley transformation maps dissipative linear
relations on contractive linear relations and vice versa.

If A is a maximal dissipative linear relation, then by Lemma 2.3.3 ran(A−1) =
X and therefore dom C(A) = X.

If K is a everywhere defined contractive operator, then C(K) is dissipative. If
C(K) would not be maximal dissipative, then it would have a proper dissipative
extension A. The Cayley transform of A would be a proper contractive extension
of K, which is impossible as K is already everywhere defined. ❑

Corollary 2.3.15. A linear relation A on a Hilbert space X is maximal dissi-
pative, if and only if there exists an everywhere defined K contractive operator
on X (domK = X) such that

A = ker
[
I +K I−K

]
. (2.4)

We can even say C(A) = K and C(K) = A.

Proof. This immediately follows from Theorem 2.3.14 and Lemma 2.3.13. ❑

Remark 2.3.16. There is also a slightly different characterization of maximal
dissipative operators, given by

A = ker
[
I−K I +K

]
.

This gives the inverse linear relation of the linear relation in (2.4) (the inverse
of a dissipative linear relation is again dissipative). This becomes even more
obvious, if we notice that −K is also contractive.
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2.4 Boundary Triples

Boundary triples were investigated primarily to determine self-adjoint extensions
of symmetric operators. We will use them to find dissipative extensions of
skew-symmetric operators. We will make a slight modification on the standard
definition, which allows us to work with a complete dual pair as boundary space
instead of a Hilbert space.

Boundary triples are studied extensively in [18].

Definition 2.4.1. Let A0 be a densely defined, skew-symmetric, and closed
operator on a Hilbert space X. By a boundary triple for A∗

0 we mean a triple
((B+,B−), B1, B2) consisting of a complete dual pair (B+,B−), and two linear
operators B1 : domA∗

0 → B+ and B2 : domA∗
0 → B− such that

(i) the mapping B =
[
B1

B2

]
: domA∗

0 → B+ × B−, x 7→
[
B1x
B2x

]
is surjective,

and

(ii) for x, y ∈ domA∗
0 there holds

⟨A∗
0x, y⟩X + ⟨x,A∗

0y⟩X = ⟨B1x,B2y⟩B+,B− + ⟨B2x,B1y⟩B−,B+
. (2.5)

In order to avoid too much notation we will assume that the boundary
space is a reflexive Banach space and we regard the complete dual pair (B,B′)
instead of (B+,B−) and denote the boundary triple as (B, B1, B2) instead of
((B,B′), B1, B2), which represents the setting of complete dual pairs.

When we say (B, B1, B2) is a boundary triple for A∗
0, we implicitly assume

that A0 is densely defined, closed and skew-symmetric. Clearly, if A0 is densely
defined and skew-symmetric, we can always regard A0 instead to have a closed
operator.

Note that if B is a Hilbert space and B2 maps also into B, then we can
replace the dual pairing in (2.5) by the inner product in B. If B is a Hilbert
space, this can always be forced, since we can replace B2 by ΨB2, where Ψ is the
natural isomorphism between B′ and B. Nevertheless, we will allow this nuance.

Alternatively we can write (2.5) as

⟪
[
x
A∗

0x

]
,

[
y
A∗

0y

]
⟫

X×X

= ⟪
[
B1

B2

]
x,

[
B1

B2

]
y⟫

B×B′

.

Since domA∗
0 equipped with the graph inner product of A∗

0 is isomorphic to
A∗

0 as subspace of X ×X, we can also regard B1 and B2 as mapping defined on
A∗

0 instead of domA∗
0. In fact, by this approach we could generalize boundary

triples for linear relations, as done in [7]. However, also for our usage this can
sometimes simplify some arguments. In [7] they present an even weaker concept
of boundary triples: so called quasi boundary triple.

Definition 2.4.2. Let (B, B1, B2) be a boundary triple for A∗
0. Then we define

B̃1 :

{
A∗

0 → B,
[ xy ] 7→ B1x,

B̃2 :

{
A∗

0 → B′,
[ xy ] 7→ B2x,

B̃ :

{
A∗

0 → B × B′,
[ xy ] 7→

[
B1

B2

]
x.
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The only difference between B̃1 and B1 is that B̃1 is defined on the operator
A∗

0, where we regard A∗
0 as subspace of X ×X, and B1 is defined on domA∗

0. If
we introduce π1 : X ×X → X, [ x1

x2
] 7→ x1 the projection on the first component,

then we have the relation

B̃1[
x
y ] = B1π1[

x
y ].

On the other hand, since A∗
0 is an operator (well-defined), we can also find an

embedding ι from domA∗
0 onto A∗

0. Therefore, we have B1x = B̃1ιx. Accordingly,
we have the same for B̃2 and B̃.

If we would fully commit to linear relations, we could write (2.5) even more
compactly, as

⟪f, g⟫X×X = ⟪B̃f, B̃g⟫B×B′ for all f, g ∈ A∗
0.

In [7] this notation is used.

Remark 2.4.3. Let A be a densely defined, closed, and symmetric operator.
Then iA is a densely defined, closed, and skew-symmetric operator. If there is
a boundary triple (B, B1, B2) for (iA)∗, then we have the following adaption
of (2.5)

⟨A∗x, y⟩ − ⟨x,A∗y⟩ = ⟨iB1x,B2y⟩ − ⟨B2x, iB1y⟩.

Hence, (B, iB1, B2) is a boundary triple for A∗ in the notion of symmetric
operators.

One could wonder why we introduced a boundary triple for the adjoint of a
skew-symmetric operator instead of replacing A∗

0 just with any operator A in
Definition 2.4.1. One could think that these properties already imply that A∗

is given by the restriction of −A to kerB1 ∩ kerB2 and A is the adjoint of a
skew-symmetric operator anyway, but this is not necessarily true as we will see
later in Example 2.4.6.

Example 2.4.4. Let X = L2(0, 1)2 and

A0 = −

[
0 d

dξ
d
dξ 0

]
with domA0 = H1

0(0, 1)× H1
0(0, 1).

Then the adjoint of this operator is given by

A∗
0 =

[
0 d

dξ
d
dξ 0

]
with domA∗

0 = H1(0, 1)× H1(0, 1).
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For smooth functions we have by the integration by parts formula

⟨A∗
0f, g⟩+ ⟨f,A∗

0g⟩ =
∫ 1

0

〈[
f ′2
f ′1

]
,

[
g1
g2

]〉
dξ +

∫ 1

0

〈[
f1
f2

]
,

[
g′2
g′1

]〉
dξ

=

∫ 1

0

(f ′2g1 + f ′1g2 + f1g
′
2 + f2g

′
1) dξ = f2g1

∣∣∣1
0
+ f1g2

∣∣∣1
0

= f2(1)g1(1)− f2(0)g1(0) + f1(1)g2(1)− f1(0)g2(0)

=

〈[
f2(1)
−f2(0)

]
︸ ︷︷ ︸

B2f

,

[
g1(1)
g1(0)

]
︸ ︷︷ ︸

B1g

〉
+

〈[
f1(1)
f1(0)

]
︸ ︷︷ ︸

B1f

,

[
g2(1)
−g2(0)

]
︸ ︷︷ ︸

B2g

〉
.

Defining B1f :=
[
f1(1)
f1(0)

]
and B2f :=

[
f2(1)
−f2(0)

]
yields (by continuous extension)

⟨A∗
0f, g⟩+ ⟨f,A∗

0g⟩ = ⟨B1f,B2g⟩+ ⟨B2f,B1g⟩. (2.6)

The mapping
[
B1

B2

]
: domA∗

0 → K2×K2 is surjective (this can be seen by choosing

f1 and f2 to be linear interpolations). Hence, (K2, B1, B2) is a boundary triple
for A∗

0.

The operator A0 can be recovered by restricting −A∗
0 to kerB1 ∩ kerB2 as

the next lemma will show. However, if A∗
0 satisfied item (i) and item (ii) but

wasn’t the adjoint of a skew-symmetric operator, then the next lemma would
not hold as Example 2.4.6 demonstrates.

Lemma 2.4.5. Let A0 be a densely defined, skew-symmetric, and closed operator
on a Hilbert space X and (B, B1, B2) be a boundary triple for A∗

0. Then

A0 = −A∗
0

∣∣
kerB1∩kerB2

= −A∗
0

∣∣
kerB

.

In other words domA0 = kerB1 ∩ kerB2 = kerB.

Proof. Let x ∈ kerB1∩kerB2 and y ∈ domA∗
0. Then the right-hand-side of (2.5)

is 0. Hence,

⟨x,A∗
0y⟩X = ⟨−A∗

0x, y⟩X for all y ∈ domA∗
0.

This yields (x,−A∗
0x) ∈ A∗∗

0 = A0. Hence, −A∗
0

∣∣
kerB1∩kerB2

⊆ A0.
On the other hand if x ∈ domA0, then A

∗
0x = −A0x and consequently

⟨A∗
0x︸︷︷︸
=−A0x

, y⟩X + ⟨x,A∗
0y⟩X = ⟨−x,A∗

0y⟩X + ⟨x,A∗
0y⟩X = 0.

Therefore, the right-hand-side of (2.5) is 0 which can be written as

⟪[B1

B2

]
x,
[
B1

B2

]
y⟫B×B′ = 0 for all y ∈ domA∗

0.
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Since
[
B1

B2

]
is surjective on B × B′, we have[

B1x
B2x

]
⊥⟪,⟫ B × B′,

which implies x ∈ kerB1∩kerB2 = kerB (because ⟪·, ·⟫ is non-degenerated). ❑

The next example shows that it is possible to have item (i) and item (ii) of
a “boundary triple” for an operator A (replacing A∗

0 with A in Definition 2.4.1)
without A being the adjoint of a skew-symmetric operator. Moreover, it shows
that in this situation Lemma 2.4.5 does not hold. This demonstrates the
importance of A being the adjoint of a skew-symmetric operator in the definition.

Example 2.4.6. Let A0 be the operator on L2(0, 1)2 from Example 2.4.4.

Then we have a boundary triple (K2, B1, B2) for A
∗
0, where B1f :=

[
f1(1)
f1(0)

]
and

B2f :=
[

f2(1)
−f2(0)

]
.

We define A as the restriction of A∗
0 on H1

{1}=0(0, 1)× H1
{0}={1}(0, 1), where

H1
{1}=0(0, 1) := {f ∈ H1(0, 1) | f(1) = 0},

and H1
{0}={1}(0, 1) := {f ∈ H1(0, 1) | f(0) = f(1)}.

Therefore, we can reformulate (2.6) for f, g ∈ domA:

⟨Af, g⟩+ ⟨f,Ag⟩ = ⟨B1f,B2g⟩+ ⟨B2f,B1g⟩ = −f1(0)g2(0) + f2(0)(−g1(0)).

By defining F1f := −f1(0) and F2f := f2(0) we again have that
[
F1

F2

]
: domA→

K×K is surjective. However A is not the adjoint of a skew-symmetric operator.
If it were, then (K, F1, F2) would be a boundary triple for A and

A∗ = −A
∣∣
kerF1∩kerF2

= −A∗
0

∣∣
H1

0(0,1)
2 = A0.

This would imply A = A∗∗ = A∗
0, which is certainly not true.

In fact, with the boundary triple for A∗
0 we can apply Corollary 2.4.11, which

will give us that the adjoint of A is −A∗
0

∣∣
H1

{0}={1}(0,1)×H1
{0}=0

(0,1)
.

Lemma 2.4.7. Let (B, B1, B2) be a boundary triple for A∗
0. We endow domA∗

0

with the graph inner product of A∗
0. Then the following statements are true

(i) B̃ : A∗
0 → B × B′ is bounded.

(ii) B : domA∗
0 → B × B′ is bounded (w.r.t. to the graph norm).

(iii) B̃ restricted to A∗
0

∣∣
(ran(A−1))⊥⊕A∗

0
(ran(A+1))⊥

is bijective, bounded and bound-

edly invertible.

(iv) B restricted to (ran(A− 1))⊥ ⊕A∗
0
(ran(A+ 1))⊥ is bijective, bounded and

boundedly invertible.
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Clearly, this also implies that B̃1, B̃2 and B1, B2 are bounded.

Proof. Recall that we can decompose domA∗
0 by Lemma 2.3.6 into

domA∗
0 = domA0 ⊕A∗ ran(A− 1)⊥ ⊕A∗ ran(A+ 1)⊥.

By Lemma 2.4.5 domA0 = kerB, which implies that B restricted to ran(A−
1)⊥ ⊕A∗ ran(A+ 1)⊥ is bijective. Hence, it is enough to show item (iv).

We will show that B
∣∣−1

ran(A0−1)⊥⊕ran(A0+1)⊥
is bounded. By the open map-

ping theorem this also implies that B
∣∣
ran(A0−1)⊥⊕ran(A0+1)⊥

is bounded. For

notational simplicity we will replace B
∣∣
ran(A0−1)⊥⊕ran(A0+1)⊥

by B.

Let ([ un
vn ])n∈N be a sequence in ranB

∣∣
ran(A−1)⊥

⊆ B × B′ that converges to
[ uv ] in B × B′. Then we define xn := B−1[ un

vn ] and x := B−1[ uv ], which gives the
sequence (xn)n∈N in ran(A0−1)⊥. We can uniquely and orthogonally decompose
x into x = x+ + x−, where x± ∈ ran(A0 − (±1))⊥. By Lemma 2.3.8

∥xn − x∥2A∗
0

= ⟨xn − x, xn − x+⟩A∗
0
− ⟨xn − x, x−⟩A∗

0

= ⟪
[

xn − x
A∗

0(xn − x)

]
,

[
xn − x+

A∗
0(xn − x+)

]
⟫

X×X

+ ⟪
[

xn − x
A∗

0(xn − x)

]
,

[
x−

A∗
0x

−

]
⟫

X×X

= ⟪
[
B1(xn − x)
B2(xn − x)

]
,

[
B1(xn − x+)
B2(xn − x+)

]
⟫

B×B′

+ ⟪
[
B1(xn − x)
B2(xn − x)

]
,

[
B1x

−

B2x
−

]
⟫

B×B′

= ⟪
[
un − u
vn − v

]
,

[
un −B1x

+

vn −B2x
+

]
⟫

B×B′

+ ⟪
[
un − u
vn − v

]
,

[
B1x

−

B2x
−

]
⟫

B×B′

→ 0,

(2.7)

as [ un
vn ] is bounded and converges to [ uv ]. Hence, xn converges to x (w.r.t. ∥·∥A∗

0
)

and x ∈ ran(A0− 1)⊥, by the closedness of ran(A0− 1)⊥. Moreover, Bx = [ uv ] ∈
ranB

∣∣
ran(A0−1)⊥

, which implies that ranB
∣∣
ran(A0−1)⊥

is closed. Equation (2.7)

also implies the continuity of B
∣∣−1

ran(A0−1)⊥
. Analogously, we can show that

B
∣∣−1

ran(A0+1)⊥
is continuous. Since B is bijective from ran(A0− 1)⊥⊕A∗

0
ran(A0 +

1)⊥ to B × B′, we have B × B′ = ranB
∣∣
ran(A0−1)⊥

∔ ranB
∣∣
ran(A0+1)⊥

, which is

a decomposition of closed subspaces. Hence, the continuity of B
∣∣−1

ran(A0−1)⊥
and

B
∣∣−1

ran(A0+1)⊥
implies the continuity of B. ❑

Remark 2.4.8. B×B′ with ⟪·, ·⟫B×B′ is a Krein space. Its fundamental decompo-
sition is given by B ran(A0− 1)⊥ and B ran(A0+1)⊥. The Krein space topology
and the norm topology of B × B′ coincide. Hence, we can endow B × B′ with an
inner product such that it is a Hilbert space. Consequently, there is an inner
product on B whose induced norm is equivalent to its original norm. Therefore,
we do not restrict ourselves, if we ask B to be a Hilbert space in Definition 2.4.1
from the beginning.
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Definition 2.4.9. Let A0 be a skew-symmetric operator and (B, B1, B2) a
boundary triple for A∗

0. Then for a linear relation Θ between B and B′ (Θ ⊆
B × B′) we define

AΘ :=

{[
x
y

]
∈ A∗

0

∣∣∣∣ [B1

B2

]
x ∈ Θ

}
= B̃−1Θ.

So AΘ is the restriction of A∗
0 to domAΘ =

{
x ∈ domA∗

0

∣∣ [B1

B2

]
x ∈ Θ

}
. If Θ

is even an operator on B, then domAΘ = ker(B2 −ΘB1). If Θ
−1 is an operator,

then domAΘ = ker(B1 −Θ−1B2).
On the other hand if we have −A0 ⊆ A ⊆ A∗

0, then we can construct a linear
relation Θ(A) such that AΘ(A) = A, by

Θ(A) :=

[
B1

B2

]
domA =

[
B̃1

B̃2

]
A = B̃A.

Hence, every operator A that satisfies −A0 ⊆ A ⊆ A∗
0 is given by AΘ for some

linear relation Θ (for Θ = B̃A).

Proposition 2.4.10. Let A0 be a closed and skew-symmetric operator on a
Hilbert space X, (B, B1, B2) a boundary triple for A∗

0 and Θ a linear relation
between B and B′. Then

(i) AΘ = AΘ,

(ii) A∗
Θ = −A−Θ∗ ,

(iii) AΘ is (maximal) dissipative/accretive, if and only if Θ is (maximal) dissi-
pative/accretive.

In particular, AΘ is skew-adjoint, if and only if, Θ is skew-adjoint.

Proof.

(i) Since B̃ is bounded and boundedly invertible, we have

AΘ = B̃−1Θ = B̃−1Θ = AΘ.

(ii) Note that by −A0 ⊆ AΘ ⊆ A∗
0, the adjoint of AΘ is contained in −A∗

0.
Moreover, by assumption we have

⟪
[
x
y

]
,

[
u
v

]
⟫

X×X

= ⟪B̃
[
x
y

]
, B̃

[
u
v

]
⟫

B×B′

(2.8)

for all [ xy ], [
u
v ] ∈ A∗

0. Hence, by Remark 2.2.5[
u
v

]
∈ −A∗

Θ ⇔ B̃

[
u
v

]
∈ −Θ∗ ⇔

[
u
v

]
∈ B̃−1(−Θ∗)︸ ︷︷ ︸

=A−Θ∗

.
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(iii) Note that dissipativity of a linear relation R between Y and Y ′ can be
characterized by ⟪[ xy ], [ xy ]⟫Y×Y ′ ≤ 0 for all [ xy ] ∈ R. Hence, again by (2.8)
we conclude the assertion. ❑

The next corollary is same result in a different notation, as it is presented
in [28].

Corollary 2.4.11. Let A0 be a skew-symmetric operator and (B, B1, B2) be
a boundary triple for A∗

0. Consider the restriction A of A∗
0 to a subspace D

containing kerB1 ∩ kerB2. Define a subspace of B × B′ by Θ :=

[
B1

B2

]
D. Then

the following claims are true:

(i) The domain of A can be written as

domA = D =

{
d ∈ domA∗

0

∣∣∣∣ [B1

B2

]
d ∈ Θ

}
.

(ii) The operator closure of A is A∗
0 restricted to

D̃ :=

{
d ∈ domA∗

0

∣∣∣∣ [B1

B2

]
d ∈ Θ

}
,

where Θ is the closure in B2. Therefore, A is closed, if and only if Θ is
closed.

(iii) The adjoint A∗ is the restriction of −A∗
0 to D′, where

D′ :=

{
d′ ∈ domA∗

0

∣∣∣∣ [B1

B2

]
d′ ∈

[
0 I
I 0

]
Θ⊥︸ ︷︷ ︸

=−Θ∗

}
.

(iv) The operator A is (maximal) dissipative if and only if Θ is a (maximal)
dissipative relation. It also holds that A is (maximal) accretive, if and only
if Θ is (maximal) accretive.

2.5 Strongly Continuous Semigroups

We will be very minimalistic in this section and only introduce really necessary
results. However, there is a lot more to say about strongly continuous semigroups.
We refer to [15] for a detailed introduction.

Let A be a n× n matrix and x0 ∈ Cn any initial vector. Then we regard the
following differential equation (Cauchy problem)

ẋ(t) = Ax(t), t ∈ [0,+∞)

x(0) = x0.
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The solution of this equation is given by x(t) = etAx0. The exponential function
is not only defined for matrices, but also for bounded linear mappings on a
Banach space. Hence, this approach to solve differential equations can easily
extended to so called abstract Cauchy problems: Let X be a Banach space, A
be a bounded linear mapping and x0 ∈ X. Find a function x : [0,+∞) → X
such that

ẋ(t) = Ax(t), t ∈ [0,+∞)

x(0) = x0.
(2.9)

Again the solution is given by x(t) = etAx0.
However, we want to go even further and want to solve this abstract Cauchy

problem for unbounded operators. For unbounded operators the exponential
function is harder to define or not even possible, but if A satisfies a few conditions
we can find something that carries the essence to solve the abstract Cauchy
problem.

Definition 2.5.1. Let X be a Banach space and T : [0,+∞)→ Lb(X). We say
T is a strongly continuous semigroup or C0-semigroup, if

• T (0) = I,

• T (t+ s) = T (t)T (s) for all t, s ∈ [0,+∞),

• and t 7→ T (t)x is continuous for every x ∈ X, i.e. T is strongly continuous.

Note that it is actually enough to ask for T is strongly continuous in 0, as
T (t+ s) = T (t)T (s) then already implies that T is strongly continuous in every
t ∈ [0,+∞).

By the properties of the exponential function we can see that T (t) := etA,
for A ∈ Lb(X), is a C0-semigroup.

Definition 2.5.2. Let T be a strongly continuous semigroup on a Banach space
X. We define its infinitesimal generator by

A :=

{[
x
y

]
∈ X ×X

∣∣∣∣ y = lim
t→0

T (t)x− x
t

}
.

Note that the infinitesimal generator A is an operator (mulA = {0}), since
limits in Hausdorff spaces are unique. So for x ∈ domA we can also write

Ax = lim
t→0

T (t)x− x
t

.

Lemma 2.5.3. Let T be a strongly continuous semigroup. Then there exists an
M ≥ 1 and an ω ∈ R such that

∥T (t)∥ ≤Meωt for all t ∈ [0,+∞).
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Proof. First we will show that there is an ϵ > 0 such that ∥T (t)∥ is uniformly
bounded for t ∈ [0, ϵ]:

Let us assume that this is not true. Then for each n ∈ N there exists a
tn ∈ [0, 1

n ] such that
∥T (tn)∥ ≥ n. (2.10)

Since (tn)n∈N converges to 0 and T is strongly continuous we have T (tn)x→ x
for all x ∈ X. Consequently, the set {T (tn)x |n ∈ N} is bounded in X for every
x ∈ X. The principle of uniform boundedness implies that the set {T (tn) |n ∈ N}
is bounded in Lb(X), which contraticts (2.10). Thus there exists an ϵ > 0 such
that ∥T (t)∥ ≤M on [0, ϵ].

We can write every t = nϵ+ δ, where δ < ϵ and n ∈ N (n = ⌊ tϵ⌋). This leads
to

∥T (t)∥ = ∥T (nϵ+ δ)∥ = ∥T (ϵ)nT (δ)∥ ≤MnM ≤MM
t
ϵ =Me

1
ϵ ln(M)t.

Defining ω as 1
ϵ ln(M) finishes the proof. ❑

Lemma 2.5.4. Let T be a strongly continuous semigroup, A its infinitesimal
generator and x ∈ domA. Then

d

dt

(
T (t)x

)
= T (t)Ax = AT (t)x.

Proof. Note that for fixed t the operator T (t) is continuous. Therefore,

lim
s→0+

T (t+ s)x− T (t)x
s

= lim
s→0+

T (t)T (s)x− T (t)x
s

= T (t) lim
s→0+

T (s)x− x
s

= T (t)Ax.

On the other hand, we have to check the limit from the left hand side, which we
can rewrite as a right hand side limit

lim
s→0−

T (t+ s)x− T (t)x
s

= lim
s→0+

T (t)x− T (t− s)x
s

.

Hence, we have to check whether the limit agrees with T (t)Ax. Note that
T (t) ≤Meωt (by Lemma 2.5.3) and that T is strongly continuous:∥∥∥∥T (t− s)T (s)x− xs

− T (t)Ax
∥∥∥∥

≤
∥∥∥∥T (t− s)T (s)x− xs

− T (t− s)Ax
∥∥∥∥+ ∥T (t− s)Ax− T (t)Ax∥

≤Meω(t−s)

∥∥∥∥T (s)x− xs
−Ax

∥∥∥∥︸ ︷︷ ︸
→0

+ ∥T (t− s)Ax− T (t)Ax∥︸ ︷︷ ︸
→0

.
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Hence, d
dtT (t)x = T (t)Ax and T (t)x ∈ domA. Therefore,

lim
s→0+

T (t+ s)x− T (t)x
s

= lim
s→0+

T (s)T (t)x− T (t)x
s

= AT (t)x.

For the limit from left hand side we obtain the same since we have already shown
that the limits agree. ❑

Now let T be a strongly continuous semigroup, A its infinitesimal generator
and x0 ∈ domA. Then the abstract Cauchy problem

ẋ(t) = Ax(t), t ∈ [0,+∞),

x(0) = x0,

is solved by x(t) := T (t)x0, as

ẋ(t) =
d

dt

(
T (t)x0

)
= AT (t)x0 = Ax(t)

and x(0) = T (0)x0 = x0. It can even be shown that this is the only solution,
see [15, ch. II prop. 6.2].

Therefore, it is natural to ask when a linear operator A is an infinitesimal
generator of a strongly continuous semigroup.

We can even extend the solution term for initial conditions that are not in
domA.

Definition 2.5.5. We say a function x : [0,+∞)→ X is a mild solution of an
abstract Cauchy problem (2.9), where A is an unbounded operator on X, if

x(t)− x(0) = A

∫ t

0

x(s) ds,

where we implicitly demand that
∫ t

0
x(s) ds ∈ domA.

Every mild solution is given by x(·) = T (·)x0 for x0 ∈ X, if A is the
infinitesimal generator of T (·).

Since we are only interested in solutions that respect certain physical con-
servation laws, we restrict ourselves to semigroups that produce non-increasing
solutions w.r.t. the norm (in our applications the norm will represent the energy).

Definition 2.5.6. We say a strongly continuous semigroup T is a contraction
semigroup, if ∥T (t)∥ ≤ 1 for all t ∈ [0,+∞).

Note that our definition of dissipativity only matches the standard definition
in literature for Hilbert spaces.

Theorem 2.5.7 (Lumer-Phillips Theorem). Let A be a linear operator on a
Hilbert space X. Then A is the infinitesimal generator of a contraction semigroup
T , if and only if A is dissipative and ran(A− I) = X.
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Note that A is dissipative and ran(A− I) = X is equivalent to A is maximal
dissipative (in the Hilbert space case).

Proof. For the proof we refer to [15, ch. II, th. 3.15] ❑

Corollary 2.5.8. Let A be a closed and densely defined linear operator on a
Hilbert space X. Then A is the infinitesimal generator of a contraction semigroup
T , if and only if A and A∗ are dissipative.

Proof. For the proof we refer to [15, ch. II, cor. 3.17]. ❑
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Chapter 3

Port-Hamiltonian Systems

The port-Hamiltonian formulation has proven to be a powerful tool for the
modeling and control of complex multiphysics systems. Port-Hamiltonian systems
encode the underlying physical principles such as conservation laws directly
into the structure of the system structure. An introductory overview can be
found in [59]. This theory originates from B. M. Maschke and A. van der
Schaft [36]. For finite-dimensional systems there is by now a well-established
theory [58, 14, 13]. The port-Hamiltonian approach has been further extended to
the infinite-dimensional situation, see e.g. [60, 30, 32, 26, 67, 61, 25, 28]. In [28]
the authors showed that the port-Hamiltonian formulation of the wave equation
in n spatial dimensions possess unique mild and classical solutions. We want
to develop a port-Hamiltonian framework in n spatial dimension that provides
existence and uniqueness of solutions.

In this chapter we will give a precise definition of what we understand under
a linear first order port-Hamiltonian system. We aim to lift the theory of infinite
dimensional port-Hamiltonian systems in one spatial variable, that is presented
in the book of Jacob and Zwart [25] and Ph.D. thesis of Villegas [61], to n spatial
variables—at least in some aspects. Although Dirac structures play an important
role in most of the previous references, we choose a semigroup approach as in [25].
In the Ph.D. thesis [61] there is even one chapter dedicated to port-Hamiltonian
systems in n spatial variables. We will adopt the system equation:

∂

∂t
x(t, ζ) =

n∑
i=1

∂

∂ζi
PiH(ζ)x(t, ζ) + P0H(ζ)x(t, ζ), ζ ∈ Ω, t ≥ 0,

x(0, ζ) = x0(ζ), ζ ∈ Ω,

where Pi are symmetric matrices, P0 is a skew-symmetric matrix and H is the
matrix-valued Hamiltonian density. The details are given in Definition 3.2.1.
However, the theory in [61] is limited, e.g. it can not handle Maxwell’s equations
as it requires that the boundary operators establish a Gelfand triple. We will
see that the boundary operators of Maxwell’s equations cannot be extended to
operators that map into L2(∂Ω) in Example 5.1.8. We will overcome these limits

41
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by, among others, introducing quasi Gelfand triples in Chapter 4.
We will associate “natural” boundary operators to this PDE, which can be

used to control and observe the system

u(t, ζ) = B(ζ)H(ζ)x(t, ζ), ζ ∈ ∂Ω, t ≥ 0,

y(t, ζ) = C(ζ)H(ζ)x(t, ζ), ζ ∈ ∂Ω, t ≥ 0.

However, for now we restrict ourselves to the case of no input (u = 0), which
essentially gives a boundary condition. We will later see that answering the
question of existence and uniqueness of solutions for no input will be crucial
also for non-zero input. We will also ignore the output function y for now as we
focus on existence and uniqueness of solutions of the inner dynamic. We will
regard the entire system (with input and output) in Chapter 6.

3.1 Differential Operators

Before we start analyzing port-Hamiltonian systems we will make some obser-
vations about the differential operators that will appear in the PDE. In this
section we take care of all the technical details of these differential operators.
Since it doesn’t really make a difference whether we use the scalar field R or C
we will use K ∈ {R,C} for the scalar field. The following assumption will be
made for the rest of this chapter.

Assumption 3.1.1. Let m1,m2, n ∈ N, Ω ⊆ Rn be open with a bounded Lip-
schitz boundary, and L = (Li)

n
i=1 such that Li ∈ Km1×m2 for all i ∈ {1, . . . , n}.

Corresponding to L we also have LH := (LH
i )

n
i=1, where L

H
i denotes the complex

conjugated transposed (Hermitian transposed) matrix.

By bounded Lipschitz boundary we mean that the surface measure of the
boundary is finite. Hence, we can also regard the exterior of a domain. Moreover,
Ω = Rn is also allowed as the boundary of Rn is empty.

Moreover, we will write D(Rn)
∣∣
Ω

for {f
∣∣
Ω
| f ∈ D(Rn)}. We will use

∂i as a short notation for ∂
∂ζi

. We denote the boundary trace operator by

γ0 : H
1(Ω, X)→ L2(∂Ω, X) for a Banach space X.

Definition 3.1.2. Let L be as in Assumption 3.1.1. Then we define

L∂ :=

n∑
i=1

∂iLi and LH
∂ := (LH)∂ =

n∑
i=1

∂iL
H
i

as operators from D′(Ω)m2 to D′(Ω)m1 and from D′(Ω)m1 to D′(Ω)m2 , respec-
tively. Furthermore, we define the space

H(L∂ ,Ω) :=
{
f ∈ L2(Ω,Km2)

∣∣L∂f ∈ L2(Ω,Km1)
}
.

This space is endowed with the inner product

⟨f, g⟩H(L∂ ,Ω) := ⟨f, g⟩L2(Ω,Km2 ) + ⟨L∂f, L∂g⟩L2(Ω,Km1 ).
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The space H0(L∂ ,Ω) is defined as D(Ω)m2
∥·∥H(L∂,Ω)

, the closure of D(Ω)m2 in
H(L∂ ,Ω). We denote the outward pointing normalized normal vector on ∂Ω by
ν and its i-th component by νi. Moreover, we define

Lν :=

n∑
i=1

νiLi :

{
L2(∂Ω,Km2) → L2(∂Ω,Km1),

f 7→
∑n

i=1 νiLif,

and LH
ν := (LH)ν .

The operator L∂ can also be regarded as a linear unbounded operator from
L2(Ω,Km2) to L2(Ω,Km1) with domain H(L∂ ,Ω). In fact this is what we will
do most of the time. The same goes for LH

∂ with domain H(LH
∂ ,Ω). Since

ν ∈ L∞(∂Ω,Rn) the mappings Lν and LH
ν are well-defined and bounded.

For convenience we will write H1(Ω)k instead of H1(Ω,Kk) and L2(Ω)k instead
of L2(Ω,Kk) for k ∈ N.

Clearly, D(Rn)m2
∣∣
Ω
⊆ H1(Ω)m2 ⊆ H(L∂ ,Ω) and D(Rn)m1

∣∣
Ω
⊆ H1(Ω)m1 ⊆

H(LH
∂ ,Ω).

Example 3.1.3. Let us regard the following matrices

L1 =
[
1 0 0

]
, L2 =

[
0 1 0

]
, and L3 =

[
0 0 1

]
.

Then we obtain the corresponding differential operators

L∂ =
[
∂1 ∂2 ∂3

]
= div and LH

∂ =

∂1∂2
∂3

 = grad .

The corresponding operator Lν that acts on L2(∂Ω) can be written as an inner
product

Lνf =
[
ν1 ν2 ν3

] f1f2
f3

 = ν · f.

Clearly, the previous example can be extended to any finite dimension.

Example 3.1.4. The following matrices will construct the rotation operator.

L1 =

0 0 0
0 0 −1
0 1 0

 , L2 =

 0 0 1
0 0 0
−1 0 0

 , and L3 =

0 −1 0
1 0 0
0 0 0

 .
In this example we have LH

i = −Li. Furthermore, the corresponding differential
operator is

L∂ =

 0 −∂3 ∂2
∂3 0 −∂1
−∂2 ∂1 0

 = rot = −LH
∂ .
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The corresponding operator Lν that acts on L2(∂Ω) can be written as a vector
cross product

Lνf =

 0 −ν3 ν2
ν3 0 −ν1
−ν2 ν1 0

f1f2
f3

 = ν × f.

The previous two examples give us a definition of the spaces H(rot,Ω),
H(div,Ω) and H(grad,Ω) by the corresponding L and H(L∂ ,Ω). These definition
matches the standard definition in literature. It is easy to see that H(grad,Ω) =
H1(Ω).

Lemma 3.1.5. The operator L∂ with domL∂ = H(L∂ ,Ω) is a closed opera-
tor from L2(Ω)m2 to L2(Ω)m1 and H(L∂ ,Ω) endowed with the inner product
⟨·, ·⟩H(L∂ ,Ω) is a Hilbert space.

Note that for f ∈ D′(Ω)m2 and ϕ ∈ D(Ω)m1 we have

⟨L∂f, ϕ⟩D′(Ω)m1 ,D(Ω)m1 =

n∑
i=1

⟨∂iLif, ϕ⟩D′(Ω)m1 ,D(Ω)m1

=

n∑
i=1

⟨f,−∂iLH
i ϕ⟩D′(Ω)m2 ,D(Ω)m2 =⟨f,−LH

∂ ϕ⟩D′(Ω)m2 ,D(Ω)m2 .

Proof. Let
([

fk
L∂fk

])
k∈N

be a sequence in L∂ that converges to a point
[
f
g

]
∈

L2(Ω)m2 × L2(Ω)m1 . For an arbitrary ϕ ∈ D(Ω)m1 we have

⟨g, ϕ⟩D′(Ω)m1 ,D(Ω)m1 = lim
k→∞

⟨L∂fk, ϕ⟩D′(Ω)m1 ,D(Ω)m1

= lim
k→∞

⟨fk,−LH
∂ ϕ⟩D′(Ω)m1 ,D(Ω)m1

= ⟨f,−LH
∂ ϕ⟩D′(Ω)m2 ,D(Ω)m2

= ⟨L∂f, ϕ⟩D′(Ω)m1 ,D(Ω)m1 ,

which implies g = L∂f . Since g is also in L2(Ω)m1 , we conclude that L∂ is closed.
Hence, domL∂ = H(L∂ ,Ω) endowed with the graph norm of L∂ , which is induced
by ⟨·, ·⟩H(L∂ ,Ω), is a Hilbert space. ❑

Lemma 3.1.6. The adjoint of L∂ with domL∂ = H(L∂ ,Ω) (as an unbounded
operator/linear relation from L2(Ω)m2 to L2(Ω)m1) is given by L∗

∂ g = −LH
∂ g for

g ∈ domL∗
∂ ⊆ H(LH

∂ ,Ω), i.e. L
∗
∂ ⊆ −LH

∂ .

Proof. For an arbitrary g ∈ domL∗
∂ and an arbitrary ϕ ∈ D(Ω)m2 we have

⟨L∗
∂ g, ϕ⟩D′,D = ⟨L∗

∂ g, ϕ⟩L2 = ⟨g, L∂ϕ⟩L2 = ⟨g, L∂ϕ⟩D′,D = ⟨−LH
∂ g, ϕ⟩D′,D.

Therefore, L∗
∂ g = −LH

∂ g and L∗
∂ g ∈ L2(Ω)m2 implies LH

∂ g ∈ L2(Ω)m2 . Conse-
quently, domL∗

∂ ⊆ H(LH
∂ ,Ω). ❑
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Remark 3.1.7. If L contains only Hermitian matrices (LH
i = Li), then L

H
∂ = L∂

and L∗
∂ is skew-symmetric by the previous lemma.

The next result is an integration by parts version for L∂ . This will be helpful to
construct a boundary triple for the differential operator in the port-Hamiltonian
PDE.

Lemma 3.1.8. Let f ∈ H1(Ω)m2 and g ∈ H1(Ω)m1 . Then we have

⟨L∂f, g⟩L2(Ω)m1 + ⟨f, LH
∂ g⟩L2(Ω)m2 = ⟨Lνγ0f, γ0g⟩L2(∂Ω)m1

= ⟨γ0f, LH
ν γ0g⟩L2(∂Ω)m2 .

(3.1)

Proof. Let f ∈ D(Rn)m2
∣∣
Ω
and g ∈ D(Rn)m1

∣∣
Ω
. By the definition of L∂ and LH

∂ ,
and the linearity of the scalar product we can write the left-hand-side of (3.1) as∫

Ω

n∑
i=1

⟨∂iLif, g⟩+ ⟨f, ∂iLH
i g⟩dλ =

∫
Ω

n∑
i=1

⟨∂iLif, g⟩+ ⟨Lif, ∂ig⟩dλ,

where λ denotes the Lebesgue measure. By the product rule for derivatives and
Gauß’s theorem (divergence theorem, Theorem 1.2.8) this is equal to∫

Ω

n∑
i=1

∂i⟨Lif, g⟩dλ =

∫
∂Ω

n∑
i=1

νiγ0⟨Lif, g⟩dµ =

∫
∂Ω

⟨Lνγ0f, γ0g⟩dµ,

where µ denotes the surface measure of ∂Ω. By density we can extend this
equality for f ∈ H1(Ω)m2 and g ∈ H1(Ω)m1 . ❑

Note that Gauß’s theorem (Theorem 1.2.8) cannot be extended to H1(Ω)n for
an unbounded Ω as we have already remarked (see [57, Re. 13.7.4]). However,
in (3.1) the dependencies on f and g are continuous w.r.t. the norm of H1(Ω).

Corollary 3.1.9. Let f ∈ H1(Ω)m2 and g ∈ H1(Ω)m1 . Then we have∣∣∣⟨Lνγ0f, γ0g⟩L2(∂Ω)m1

∣∣∣ ≤ ∥f∥H(L∂ ,Ω)∥g∥H(LH
∂ ,Ω).

Proof. Lemma 3.1.8, the triangle inequality and the Cauchy Schwarz inequality
yield∣∣∣⟨Lνγ0f, γ0g⟩L2(∂Ω)m1

∣∣∣ ≤ ∣∣⟨L∂f, g⟩L2(Ω)m1

∣∣+ ∣∣⟨f, LH
∂ g⟩L2(Ω)m2

∣∣
≤ ∥L∂f∥L2(Ω)m1 ∥g∥L2(Ω)m1 + ∥f∥L2(Ω)m2 ∥LH

∂ g∥L2(Ω)m2

≤
√
∥L∂f∥2L2 + ∥f∥2L2

√
∥g∥2L2 + ∥LH

∂ g∥2L2

= ∥f∥H(L∂ ,Ω)∥g∥H(LH
∂ ,Ω). ❑

Note that Ω = Rn satisfies the assumptions in Assumption 3.1.1. Hence, all
the previous results hold true for Ω = Rn (and also the following).

Our next goal is to show that D(Rn)m2
∣∣
Ω
is dense in H(L∂ ,Ω); see Theo-

rem 3.1.18. In order to achieve this we will present some regularization and
continuity results. In particular the density is needed to extend the integration
by parts formula (Lemma 3.1.8) for f ∈ H(L∂ ,Ω) and g ∈ H(LH

∂ ,Ω).
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Lemma 3.1.10. The mapping ι : H(L∂ ,Rn)→ H(L∂ ,Ω), f 7→ f
∣∣
Ω
is well-defined

and continuous for any open set Ω ⊆ Rn. In particular, L∂(f
∣∣
Ω
) = (L∂f)

∣∣
Ω
.

Moreover, if fk → f in H(L∂ ,Rn), then fk → f in H(L∂ ,Ω).

Hence, we can always regard an f ∈ H(L∂ ,Rn) as an element of H(L∂ ,Ω),
especially when supp f ⊆ Ω – then it is also possible to recover f from f

∣∣
Ω
.

Proof. If f ∈ H(L∂ ,Rn), then f ∈ L2(Rn)m2 and L∂f ∈ L2(Rn)m1 . Hence, it
is easy to see that ∥f

∣∣
Ω
∥L2(Ω) ≤ ∥f∥L2(Rn) and ∥(L∂f)

∣∣
Ω
∥L2(Ω) ≤ ∥L∂f∥L2(Rn).

Note that D(Ω) ⊆ D(Rn), and that for g ∈ L2(Rn) and ϕ ∈ D(Ω)

⟨g, ϕ⟩D′(Rn),D(Rn) = ⟨g, ϕ⟩L2(Rn) =
〈
g
∣∣
Ω
, ϕ
〉
L2(Ω)

=
〈
g
∣∣
Ω
, ϕ
〉
D′(Ω),D(Ω)

.

Hence, for f ∈ H(L∂ ,Rn) and ϕ ∈ D(Ω) we have〈
L∂(f

∣∣
Ω
), ϕ
〉
D′(Ω),D(Ω)

=
〈
f
∣∣
Ω
,−LH

∂ ϕ
〉
D′(Ω),D(Ω)

= ⟨f,−LH
∂ ϕ⟩D′(Rn),D(Rn)

= ⟨L∂f, ϕ⟩D′(Rn),D(Rn)

=
〈
(L∂f)

∣∣
Ω
, ϕ
〉
D′(Ω),D(Ω)

,

which implies L∂(f
∣∣
Ω
) = (L∂f)

∣∣
Ω

in D′(Ω). Since the latter is in L2(Ω), we

conclude f
∣∣
Ω
∈ H(L∂ ,Ω). Consequently, ι is well-defined and ∥ιf∥H(L∂ ,Ω) ≤

∥f∥H(L∂ ,Rn) by the norm estimates from the beginning. Since ι is linear this
implies the continuity of ι and in turn the last assertion of the lemma. ❑

Lemma 3.1.11. Let Dη : L
2(Rn)k → L2(Rn)k be the mapping defined by

(Dηf)(ζ) := f(ηζ),

where η ∈ (0,+∞) and k ∈ N. Then Dη converges in the strong operator topology
to I for η → 1.

Proof. For ϕ ∈ D(Rn)k we will show that η 7→ Dηϕ from (0,+∞) to L2(Rn)k is
continuous:

∥Dη1
ϕ−Dη2

ϕ∥2L2 =

∫
Rn

∥ϕ(η1ζ)− ϕ(η2ζ)∥2Kk dλ(ζ)

=
1

η2n2

∫
Rn

∥∥∥ϕ(η1
η2
ζ
)
− ϕ(ζ)

∥∥∥2
Kk

dλ(ζ)→ 0 for η2 → η1

by Lebesgue’s dominated convergence theorem, where λ denotes the Lebesgue
measure. For f ∈ L2(Rn)k there exists a sequence (ϕm)m∈N of D(Rn)k functions
that converges to f (w.r.t. ∥·∥L2). Hence,

∥Dηϕm −Dηf∥L2 =
1

ηn
∥ϕm − f∥L2

and Dηϕm converges uniformly in η ∈ (ϵ,+∞), ϵ > 0 to Dηf for m → ∞.
Consequently η 7→ Dηf is also continuous from (ϵ,+∞) to L2(Ω)k and in
particular Dηf → f for η → 1. ❑
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Definition 3.1.12. A set O ⊆ Rn is strongly star-shaped with respect to ζ0, if for
every ζ ∈ O the half-open line segment {θ(ζ − ζ0) + ζ0 | θ ∈ [0, 1)} is contained
in O. We call O strongly star-shaped, if there is a ζ0 such that O is strongly
star-shaped with respect to ζ0.

Note that this is equivalent to

θ(O − ζ0) + ζ0 ⊆ O for all θ ∈ [0, 1).

Lemma 3.1.13. Let f ∈ H(L∂ ,Rn) and ζ0 ∈ Rn. Furthermore, let fθ(ζ) :=
f( 1θ (ζ − ζ0) + ζ0) for θ ∈ (0, 1) and a.e. ζ ∈ Rn. Then fθ ∈ H(L∂ ,Rn) and
fθ → f in H(L∂ ,Rn) as θ → 1. If there exists a strongly star-shaped set O with
respect to the previous ζ0 such that supp f ⊆ O, then supp fθ ⊆ O for θ ∈ (0, 1).

Proof. Let f ∈ H(L∂ ,Rn) and α(ζ) := 1
θ (ζ − ζ0) + ζ0. Then it is easy to see that

fθ = f ◦ α and fθ ∈ L2(Rn)m2 . By change of variables we have

⟨L∂(f ◦ α), ϕ⟩D′(Rn),D(Rn)

=
〈
f,−(LH

∂ ϕ) ◦ α−1θn
〉
L2(Rn)

=
〈
f,−

n∑
i=1

LH
i ∂i

(
ϕ ◦ α−1 1

θ

)
θn
〉
L2(Rn)

=
〈
f,−LH

∂

(1
θ
ϕ ◦ α−1

)
θn
〉
L2(Rn)

=
〈1
θ
(L∂f) ◦ α, ϕ

〉
L2(Rn)

=
〈1
θ
(L∂f) ◦ α, ϕ

〉
D′(Rn),D(Rn)

.

Therefore, L∂fθ = 1
θ (L∂f)θ and fθ ∈ H(L∂ ,Rn). We can also write fθ as

Tζ0D 1
θ
T−ζ0f , where Tξ : L

2(Rn)m2 → L2(Rn)m2 is the translation mapping

f 7→ f(·+ξ) and Dη : L
2(Rn)m2 → L2(Rn)m2 is the mapping from Lemma 3.1.11.

Since Tξ is bounded and Dη converges strongly to I as η → 1, we conclude
fθ → f in L2(Rn)m2 as θ → 1 and L∂fθ = 1

θ (L∂f)θ → L∂f in L2(Rn)m1 as θ → 1.
Hence, fθ → f in H(L∂ ,Rn).

Let O be strongly star-shaped with respect to ζ0 and supp f ⊆ O. Then for
θ ∈ (0, 1)

supp fθ = θ(supp f − ζ0) + ζ0 ⊆ θ(O − ζ0) + ζ0 ⊆ O. ❑

Lemma 3.1.14. If f ∈ H(L∂ ,Ω) and ψ ∈ D(Rn)
∣∣
Ω
, then also ψf ∈ H(L∂ ,Ω)

and

L∂(ψf) = ψL∂f +

n∑
i=1

(∂iψ)Lif.

Proof. Note that ⟨ψf, ϕ⟩D′,D = ⟨f, ψϕ⟩D′,D and by the product rule

ψLH
i ∂iϕ = ∂i(ψL

H
i ϕ)− (∂iψ)L

H
i ϕ.
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Hence,

⟨L∂(ψf), ϕ⟩D′,D = −
〈
ψf, LH

∂ ϕ
〉
D′,D = −

n∑
i=1

〈
f, ψLi∂

H
i ϕ
〉
D′,D

= −
n∑

i=1

〈
f, ∂i(ψL

H
i ϕ)− (∂iψ)L

H
i ϕ
〉
D′,D

=

n∑
i=1

−
〈
f, ∂i(L

H
i ψϕ)

〉
D′,D +

〈
f, (∂iψ)L

H
i ϕ
〉
D′,D

=

n∑
i=1

⟨ψLi∂if, ϕ⟩D′,D + ⟨(∂iψ)Lif, ϕ⟩D′,D

= ⟨ψL∂f, ϕ⟩D′,D +
〈 n∑
i=1

(∂iψ)Lif, ϕ
〉
D′,D

=
〈
ψL∂f +

n∑
i=1

(∂iψ)Lif, ϕ
〉
D′,D

.

Thus, L∂(ψf) = ψL∂f +
∑n

i=1(∂iψ)Lif . ❑

Lemma 3.1.15. For every f ∈ H(L∂ ,Rn) exists a sequence (fk)k∈N in H(L∂ ,Rn),
whose terms have compact support supp fk ⊆ supp f , that converges to f in
H(L∂ ,Rn).

Proof. Let ψ ∈ C∞(Rn,R) be such that

ψ(ζ) ∈


{1}, if ∥ζ∥ ≤ 1,

[0, 1], if 1 < ∥ζ∥ < 2,

{0}, if ∥ζ∥ ≥ 2.

Then fk := ψ( ·
k )f ∈ L2(Rn)m2 and fk → f in L2. By Lemma 3.1.14 we

have L∂fk = ψ( ·
k )L∂f + 1

k

∑n
i=1(∂iψ)(

·
k )Lif and therefore fk ∈ H(L∂ ,Rn).

Since ∥∂iψ∥∞ < ∞ and ∥Lif∥L2 ≤ ∥Li∥∥f∥L2 < ∞, we have L∂fk → L∂f as
ψ( ·

k )L∂f → L∂f in L2(Rn)m2 and consequently fk → f in H(L∂ ,Rn). ❑

The next result is essentially [9, Proposition 2.5.4, page 69], except that we
allow Ω to be unbounded.

Lemma 3.1.16. For Ω ⊆ Rn (open with bounded Lipschitz boundary) there
exists an open covering (Oi)

k
i=0 of Ω such that Oi ∩ Ω is bounded and strongly

star-shaped for i ∈ {1, . . . , k} and O0 ⊆ Ω.

Proof. Since Ω has a bounded Lipschitz boundary, there is an open ball Br(0)
such that ∂Ω ⊆ Br(0). Hence, Br(0) ∩ Ω is bounded and open with bounded
Lipschitz boundary and we can apply [9, Proposition 2.5.4, page 69]. This gives
an open covering (Oi)

k
i=1 of Br(0) ∩ Ω and in particular of ∂Ω such that Oi ∩ Ω

is strongly star-shaped. We define O0 as Bϵ(Ω \
⋃k

i=1Oi), where ϵ > 0 is small
enough such that O0 ⊆ Ω. ❑
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The next lemma is similar to [12, Lemma 1, page 206], which proves the
result for L∂ = rot. The main idea of the proof can be adopted.

Lemma 3.1.17. If f ∈ H(L∂ ,Ω) is such that

⟨L∂f, ϕ⟩L2(Ω) + ⟨f, LH
∂ ϕ⟩L2(Ω) = 0 for all ϕ ∈ D(Rn)m1 , (3.2)

then f ∈ H0(L∂ ,Ω).

Recall the definition of a positive mollifier: Let ρ ∈ D(Rn). Then we define
ρϵ by ρϵ(ζ) = ϵ−nρ( ζϵ ). We say that ρϵ is a positive mollifier, if ρ(ζ) ≥ 0,∫
Rn ρ(ζ) dζ = 1 and limϵ→0 ρϵ = δ0 in the sense of distributions, where δ0 is the
Dirac delta function, i.e. ⟨δ0, ϕ⟩D′,D = ϕ(0).

In particular, for every f ∈ L2(Rn) holds

ρϵ ∗ f :=

∫
Rn

ρϵ(ζ)f(· − ζ) dζ
ϵ→0−→ f in L2(Rn).

Proof. Let f ∈ H(L∂ ,Ω) satisfy (3.2). Then we have to find a sequence (fn)n∈N
in D(Ω)m2 that converges to f with respect to ∥·∥H(L∂ ,Ω).

We define f̃ and L̃∂f as the extension of f and L∂f respectively on Rn such
that these functions are 0 outside of Ω. By

⟨L̃∂f, ϕ⟩D′(Rn),D(Rn) = ⟨L̃∂f, ϕ⟩L2(Rn) = ⟨L∂f, ϕ⟩L2(Ω)
(3.2)
= ⟨f,−LH

∂ ϕ⟩L2(Ω)

= ⟨f̃ ,−LH
∂ ϕ⟩L2(Rn) = ⟨f̃ ,−LH

∂ ϕ⟩D′(Rn),D(Rn)

= ⟨L∂ f̃ , ϕ⟩D′(Rn),D(Rn)

for ϕ ∈ D(Rn)m1 , we see that L̃∂f = L∂ f̃ and f̃ ∈ H(L∂ ,Rn) with supp f̃ ⊆ Ω.
By Lemma 3.1.16 there is a finite open covering (Oi)

k
i=0 of Ω such that Oi∩Ω

is bounded and strongly star-shaped for i ∈ {1, . . . , k} and O0 ⊆ Ω. We employ
a partition of unity and obtain (αi)

k
i=0, subordinate to this covering, that is

αi ∈ C∞(Rn), suppαi ⊆ Oi, αi(ζ) ∈ [0, 1], and

k∑
i=0

αi(ζ) = 1 for ζ ∈ Ω.

Hence, f̃ =
∑k

i=0 αif̃ and we define fi := αif̃ . By construction fi ∈ H(L∂ ,Rn)
and supp fi ⊆ Oi ∩ Ω. For i ̸= 0 the set Oi ∩ Ω is compact.

• For i ∈ {1, . . . , k} we have Oi ∩ Ω is strongly star-shaped. Lemma 3.1.13
ensures that supp(fi)θ ⊆ Oi ∩ Ω for θ ∈ (0, 1) and (fi)θ → fi in H(L∂ ,Rn)
for θ → 1.

Let ρϵ be a positive mollifier. Then ρϵ ∗ g → g in L2(Rn) for an arbitrary
g ∈ L2(Rn). Since L∂(ρϵ ∗h) = ρϵ ∗L∂h, we also have ρϵ ∗h→ h in H(L∂ ,Rn)
for h ∈ H(L∂ ,Rn) and since ρϵ ∈ C∞(Rn) we have ρϵ ∗ h ∈ C∞(Rn)m2 .

For fixed θ ∈ (0, 1) and ϵ sufficiently small, we can say supp ρϵ∗(fi)θ ⊆ Oi∩Ω.
Hence, by a diagonalization argument we find a sequence (ρϵj ∗ (fi)θj )j∈N in
D(Ω)m2 converging to fi in H(L∂ ,Rn). Doing this for every i ∈ {1, . . . , k}
yields sequences (fi,j)j∈N in D(Ω)m2 converging to fi in H(L∂ ,Rn).
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• For f0 we have supp f0 ⊆ O0 ⊆ Ω and by Lemma 3.1.15 there exists a
sequence (gl)l∈N in H(L∂ ,Rn) that converges to f0 in H(L∂ ,Rn) such that
every gl has compact support in Ω. Every gl can be approximated by
ρϵ ∗ gl for ϵ→ 0 in H(L∂ ,Rn) and if ϵ is sufficiently small supp ρϵ ∗ gl ⊆ Ω.
Hence, ρϵ ∗ gl ∈ D(Ω)m2 . A diagonalization argument establishes a sequence
(f0,j)j∈N in D(Ω)m2 that converges to f0 in H(L∂ ,Rn).

Consequently,
(∑k

i=0 fi,j
)
j∈N is a sequence in D(Ω)m2 that converges to f̃ in

H(L∂ ,Rn) and by Lemma 3.1.10 also in H(L∂ ,Ω). ❑

Theorem 3.1.18. D(Rn)m2
∣∣
Ω
is dense in H(L∂ ,Ω).

Proof. Suppose D(Rn)m2
∣∣
Ω
is not dense in H(L∂ ,Ω). Then there exists a non

zero f ∈ H(L∂ ,Ω) such that

⟨f, g⟩H(L∂ ,Ω) = ⟨f, g⟩L2 + ⟨L∂f, L∂g⟩L2 = 0 for all g ∈ D(Rn)m2
∣∣
Ω
. (3.3)

In particular, for an arbitrary h ∈ D(Ω)m2 we have

⟨f, h⟩D′,D = ⟨f, h⟩L2 = −⟨L∂f, L∂h⟩L2 = −⟨L∂f, L∂h⟩D′,D = ⟨LH
∂ L∂f, h⟩D′,D,

which implies that f = LH
∂ L∂f ∈ L2(Ω)m2 and f0 := L∂f ∈ H(LH

∂ ,Ω). Hence we
can rewrite (3.3) as

⟨LH
∂ L∂f︸︷︷︸

=f0

, g⟩L2(Ω) + ⟨L∂f︸︷︷︸
=f0

, L∂g⟩L2(Ω) = 0 for all g ∈ D(Rn)m2
∣∣
Ω
.

By Lemma 3.1.17 (switching the roles of L∂ and LH
∂ ) we have f0 ∈ H0(L

H
∂ ,Ω).

Since D(Ω)m1 is dense in H0(L
H
∂ ,Ω), there is a sequence (fn)n∈N in D(Ω)m1

converging to f0 with respect to ∥·∥H(LH
∂ ,Ω). The fact f = LH

∂ L∂f = LH
∂ f0 implies

⟨f0, fn⟩H(LH
∂ ,Ω) = ⟨f0, fn⟩L2 + ⟨LH

∂ f0, L
H
∂ fn⟩L2 = ⟨L∂f, fn⟩L2 + ⟨f, LH

∂ fn⟩L2

= ⟨L∂f, fn⟩D′,D − ⟨L∂f, fn⟩D′,D

= 0.

Since ∥f0∥2H(LH
∂ ,Ω)

= limn→∞⟨f0, fn⟩H(LH
∂ ,Ω) = 0, we have f0 = 0, which implies

f = LH
∂ f0 = 0. Hence, D(Rn)m2

∣∣
Ω
is dense in H(L∂ ,Ω). ❑

3.2 Port-Hamiltonian Systems

In this section we will introduce linear first order port-Hamiltonian systems
on multidimensional spatial domains and illustrate the difficulties we want to
overcome.

Definition 3.2.1. Let m ∈ N and P = (Pi)
n
i=1, where Pi is a Hermitian m×m

matrix. Moreover, let H : Ω→ Km×m be measurable such that H(ζ)H = H(ζ)
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and cI ≤ H(ζ) ≤ CI for a.e. ζ ∈ Ω and some constants c, C > 0 independent of
ζ. Then we endow the space XH := L2(Ω)m with the scalar product

⟨f, g⟩XH := ⟨Hf, g⟩L2(Ω)m =

∫
Ω

⟨H(ζ)f(ζ), g(ζ)⟩Km dλ(ζ).

We will refer to XH as the state space and to its elements as state variables or
states. Furthermore, let P0 ∈ Km×m be such that PH

0 = −P0. Then we will call
the differential equation

∂

∂t
x(t, ζ) =

n∑
i=1

∂

∂ζi
Pi

(
H(ζ)x(t, ζ)

)
+ P0

(
H(ζ)x(t, ζ)

)
, t ∈ R+, ζ ∈ Ω,

x(0, ζ) = x0(ζ), ζ ∈ Ω

(3.4)

a linear, first order port-Hamiltonian system, where x0 ∈ L2(Ω)m is the initial
state. The associated Hamiltonian H : XH → R+ ∪ {0} is defined by

H(x) :=
1

2
⟨x, x⟩XH =

1

2

∫
Ω

⟨H(ζ)x(ζ), x(ζ)⟩Km dλ(ζ),

where H is called the Hamiltonian density.

In most applications the Hamiltonian describes the energy in the state space.
It may seem more natural to define the inner product of XH as

1

2
⟨Hf, g⟩L2(Ω),

because then the Hamiltonian is just ∥x∥2XH
and the name energy norm is

accurate. However, then we also have to pay attention to the factor 1
2 , when we

switch between the inner products. Therefore, for convenience we leave out this
factor.

By the convention of regarding a function x : R+ × Ω → Km as x : R+ →
L2(Ω;Km) by setting x(t) = x(t, ·), we can rewrite the PDE (3.4) as

ẋ(t) =
( n∑

i=1

∂iPi + P0

)
Hx(t) = (P∂ + P0)Hx(t), x(0) = x0,

where P∂ is defined by Definition 3.1.2 replacing L with P . This is an abstract
Cauchy problem. Hence, we are interested whether (P∂ + P0)H is a generator of
a contraction semigroup.

We want to add the following assumption on P .

Assumption 3.2.2. Let m,m1,m2 ∈ N such that m = m1 + m2 and let
L = (Li)

n
i=1 such that Li ∈ Km1×m2 . Then we assume that P = (Pi)

n
i=1 has the

block structure

Pi =

[
0 Li

LH
i 0

]
.
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Assumption 3.2.2 implies that P contains only Hermitian matrices. According
to the block structure we split x ∈ Km into

[ x
LH

x
L

]
, where xLH = (xi)

m1
i=1 and

xL = (xi)
m
i=m1+1.

We have introduced differential operators L∂ for a family of matrices L.
Clearly, we can do the same with the family P . Because of the block structure
of P we can immediately derive the following identities: H(P∂ ,Ω) = H(LH

∂ ,Ω)×
H(L∂ ,Ω),

P∂ =

[
0 L∂
LH
∂ 0

]
and Pν =

[
0 Lν
LH
ν 0

]
.

By Lemma 3.1.8 we have for x, y ∈ H1(Ω)m

⟨P∂x, y⟩L2(Ω) + ⟨x, P∂y⟩L2(Ω)

= ⟨Pνγ0x, γ0y⟩L2(∂Ω)

=

〈[
0 Lν
LH
ν 0

]
γ0

[
xLH

xL

]
, γ0

[
yLH

yL

]〉
L2(∂Ω)

= ⟨Lνγ0xL, γ0yLH⟩L2(∂Ω) + ⟨LH
ν γ0xLH , γ0yL⟩L2(∂Ω)

= ⟨Lνγ0xL, γ0yLH⟩L2(∂Ω) + ⟨γ0xLH , Lνγ0yL⟩L2(∂Ω).

(3.5)

Hence, B = L2(∂Ω)m1 , B1x = Lνγ0xL and B2x = γ0xLH is reminiscent of a
boundary triple for A∗

0 = P∂ (A0 = P ∗
∂ is skew-symmetric by Remark 3.1.7).

However, we need to extend (3.5) for x, y ∈ H(P∂ ,Ω). In order to do this we
have to introduce a new norm on L2(∂Ω)m1 , which will lead to the notion of
quasi Gelfand triples.

If we are a little bit sloppy about the details (just for now), then we can
easily calculate the change of the Hamiltonian (energy) along a solution x of the
port-Hamiltonian system:

2
d

dt
H(x(t)) =

d

dt
⟨x(t), x(t)⟩XH = ⟨ẋ(t), x(t)⟩XH + ⟨x(t), ẋ(t)⟩XH

=
〈
(P∂ + P0)Hx(t), x(t)

〉
XH

+
〈
x(t), (P∂ + P0)Hx(t)

〉
XH

=
〈
(P∂ + P0)Hx(t),Hx(t)

〉
L2(Ω)

+
〈
Hx(t), (P∂ + P0)Hx(t)

〉
L2(Ω)

(since P0 is skew-adjoint, we can eliminate P0)

=
〈
P∂Hx(t),Hx(t)

〉
L2(Ω)

+
〈
Hx(t), P∂Hx(t)

〉
L2(Ω)

(we can use (3.5) and Hx =
[
(Hx)

LH

(Hx)L

]
)

= ⟨Lνγ0(Hx)L, γ0(Hx)LH⟩L2(∂Ω) + ⟨γ0(Hx)LH , Lνγ0(Hx)L⟩L2(∂Ω).

Thus, the change of the Hamiltonian (energy) only occurs on the boundary.
Moreover, we can see that the change of the Hamiltonian is connected to Stokes-
Dirac product of L2(∂Ω):

2
d

dt
H(x(t)) = ⟪

[
Lνγ0(Hx)L
γ0(Hx)

LH

]
,
[
Lνγ0(Hx)L
γ0(Hx)

LH

]
⟫
L2(∂Ω)

.
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3.3 The Wave Equation as port-Hamiltonian Sys-
tem

In [28] the wave equation in n-D is investigated as a port-Hamiltonian system.
We follow their reformulation of the wave equation such that it fits the port-
Hamiltonian framework.

The classical formulation of the wave equation without boundary conditions
is given by

∂2

∂t2
w(t, ζ) =

1

ρ(ζ)
div
(
T (ζ) gradw(t, ζ)

)
, t ∈ R+, ζ ∈ Ω,

w(0, ζ) = w0(ζ), ζ ∈ Ω,

∂

∂t
w(0, ζ) = w1(ζ), ζ ∈ Ω,

where Ω ⊆ Rn, ρ is the mass density, T is Young’s modulus and w0, w1 are the
initial conditions. Furthermore, T (ζ) is symmetric for a.e. ζ ∈ Ω,

ρ,
1

ρ
∈ L∞(Ω) and T, T (·)−1 ∈ L∞(Ω)n×n.

We can reformulate the wave equation in a port-Hamiltonian fashion, by
introducing the state variable

x(t, ζ) :=

[
x1(t, ζ)
x2(t, ζ)

]
:=

[
ρ(ζ) ∂

∂tw(t, ζ)
gradw(t, ζ)

]
.

Hence, if w is a solution of the wave equation, then

∂

∂t
x(t, ζ) =

[
ρ(ζ) ∂2

∂t2w(t, ζ)
grad ∂

∂tw(t, ζ)

]
=

[
div T (ζ) gradw(t, ζ)
grad 1

ρ(ζ)ρ(ζ)
∂
∂tw(t, ζ)

]
=

[
0 div

grad 0

] [ 1
ρ(ζ) 0

0 T (ζ)

]
︸ ︷︷ ︸

=:H(ζ)

[
x1(t, ζ)
x2(t, ζ)

]
.

(3.6)

Note that div and grad can be written as L∂ and LH
∂ for L given by the n-

dimensional analogon of Example 3.1.3. Therefore we have[
0 div

grad 0

]
=

n∑
i=1

∂

∂ζi

[
0 Li

LH
i 0

]
and we can write (3.6) as

∂

∂t
x(t, ζ) =

n∑
i=1

∂

∂ζi

[
0 Li

LH
i 0

]
H(ζ)x(t, ζ),

x(0, ζ) =

[
ρ(ζ)w1(ζ)
gradw0(ζ)

]
.

(3.7)
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It is easy to see that (3.7) fits the definition a port-Hamiltonian system. Hence,
we will regard this system as abstract Cauchy problem on L2(Ω)n+1:

ẋ(t) =

[
0 div

grad 0

]
Hx(t),

where x(t) = x(t, ·) (x(t) ∈ L2(Ω)n+1 for all t ∈ R+). However, we will later
see that for stability analysis the state space L2(Ω)n+1 is too large, as it allows
solutions that are unrelated to the original wave equation. Nevertheless for
well-posedness we can even work with this larger space.

For uniqueness of solutions we need boundary conditions, like Dirichlet
boundary conditions

w(t, ζ) = h(ζ), ζ ∈ ∂Ω,

or Neumann boundary conditions

∂

∂ν
T (ζ)w(t, ζ) = g(ζ), ζ ∈ ∂Ω.

We can reduce ourselves to homogeneous boundary condition, by subtracting a
solution of the time invariant system

div T (ζ) gradw(ζ) = 0, ζ ∈ Ω,

w(ζ) = h(ζ), ζ ∈ ∂Ω.

Accordingly, for Neumann boundary conditions. Note that w(t, ζ) = h(ζ) for
ζ ∈ ∂Ω can be translated to ∂

∂tw(t, ζ) = 0, if the initial condition w0 satisfies
the boundary condition. Therefore, we can translate the boundary conditions in
the port-Hamiltonian formulation to

γ0
1

ρ
x1(t) = 0 or ν · γ0Tx2(t) = 0,

where ν · γ0y = Lνγ0y is the “natural” boundary operator corresponding to L
given by L∂ = div.

3.4 Maxwell’s Equations

Let Ω ⊆ R3. We will see that Maxwell’s equations in a non-conducting medium

∂

∂t
D(t, ζ) = rotH(t, ζ),

∂

∂t
B(t, ζ) = − rotE(t, ζ), t ∈ R+, ζ ∈ Ω, (3.8)

divD(t, ζ) = ρ(ζ), divB(t, ζ) = 0, t ∈ R+, ζ ∈ Ω, (3.9)

D(t, ζ) = ϵ(ζ)E(t, ζ), B(t, ζ) = µ(ζ)H(t, ζ), t ∈ R+, ζ ∈ Ω, (3.10)

D(0, ζ) = D0(ζ), B(0, ζ) = B0(ζ), ζ ∈ Ω, (3.11)

where ϵ, µ, 1ϵ ,
1
µ ∈ L∞(Ω) and ρ ∈ L2(Ω), fit the port-Hamiltonian structure.
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We choose the state variable

x(t, ζ) =

[
D(t, ζ)
B(t, ζ)

]
,

so that

∂

∂t
x(t, ζ) =

[
0 rot
− rot 0

] [ 1
ϵ(ζ) 0

0 1
µ(ζ)

]
︸ ︷︷ ︸

=:H(ζ)

x(t, ζ). (3.12)

Note that by Example 3.1.4 there is an L such that L∂ = rot and LH
∂ = − rot.

Hence, (3.12) fits the definition of a port-Hamiltonian system Definition 3.2.1. We
will see that (3.9) is automatically fulfilled, if the initial condition satisfies (3.9).

The “natural” boundary operator Lν is given by f 7→ ν × f . We will see that
ν × γ0 cannot be continuously extended on H(rot,Ω) such that its codomain is
still L2(∂Ω), see Example 5.1.8. Hence, we have to find another way to get a
boundary triple for the Maxwell differential operator.

3.5 Mindlin Plate Model

The Mindlin plate model was formulated in a port-Hamiltonian fashion in [33, 8].
We just want to show the equations without going into its physical background.

Let Ω ⊆ R2 be as in Assumption 3.1.1. Let us consider the differential
operator P∂ and the skew-symmetric matrix P0 given by

P∂ :=



0 0 0 0 0 0 ∂1 ∂2
0 0 0 ∂1 0 ∂2 0 0
0 0 0 0 ∂2 ∂1 0 0
0 ∂1 0 0 0 0 0 0
0 0 ∂2 0 0 0 0 0
0 ∂2 ∂1 0 0 0 0 0
∂1 0 0 0 0 0 0 0
∂2 0 0 0 0 0 0 0


, P0 :=



0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0


.

The corresponding L = (Li)
2
i=1 is given by

L1 =

0 0 0 1 0
1 0 0 0 0
0 0 1 0 0

 and L2 =

0 0 0 0 1
0 0 1 0 0
0 1 0 0 0

 ,
and therefore P = (Pi)

2
i=1 is given by

Pi =

[
0 Li

LH
i 0

]
.



56 CHAPTER 3. PORT-HAMILTONIAN SYSTEMS

We define a Hamiltonian density by

H =



1
ρh 0 0 0 0 0 0 0

0 12
ρh3 0 0 0 0 0 0

0 0 12
ρh3 0 0 0 0 0

0 0 0

Db

0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0 Ds0 0 0 0 0 0


,

where ρ, h are strictly positive functions, Db(ζ) is a coercive 3× 3 matrix and
Ds(ζ) is a coercive 2× 2 matrix, such that all conditions on H in Definition 3.2.1
are satisfied. We write the state variable x as

α :=
[
ρhv ρh3

12w1 ρh3

12w2 κ1,1 κ2,2 κ1,2 γ1,3 γ2,3

]T
,

where we stick to the notation in [8] except that we renamed the coordinates x,
y and z as 1, 2 and 3. Furthermore, we have

e := Hα =
[
v w1 w2 M1,1 M2,2 M1,2 Q1 Q2

]T
.

We don’t want to go into details about the physical meaning of these state
variables. We just want to make it easier to translate the results into the
notation of [33, 8]. So the port-Hamiltonian PDE

∂

∂t
x = (P∂ + P0)Hx looks like

∂

∂t
α = (P∂ + P0)e,

which is the formulation in [33, 8]. The corresponding boundary operator is

Lνf =

 0 0 0 ν1 ν2
ν1 0 ν2 0 0
0 ν2 ν1 0 0



f1
f2
f3
f4
f5

 =


ν ·
[
f4
f5

]
ν ·
[
f1
f3

]
ν ·
[
f3
f2

]
 .

Since ∥ν(ζ)∥ = 1, at least ν1(ζ) ̸= 0 or ν2(ζ) ̸= 0. This can be used to show that
ranLν = L2(∂Ω)3.

Since there is no direct physical meaning to the boundary variables we will
later apply a unitary transformation on them, to obtain the boundary variables
of [33, 8].



Chapter 4

Quasi Gelfand Triples

Normally when we talk about Gelfand triples we have a Hilbert space X0 and a
reflexive Banach space X+ that can be continuously and densely embedded into
X0. The third space X− is given by the completion of X0 with respect to

∥g∥X− := sup
f∈X+\{0}

|⟨g, f⟩X0
|

∥f∥X+

.

The duality between X+ and X− is given by

⟨g, f⟩X−,X+
= lim

k→∞
⟨gk, f⟩X0

,

where (gk)k∈N is a sequence in X0 that converges to g in X−. Details for “ordinary”
Gelfand triple can be found in [18, ch. 2.1, p. 54] or in [57, ch. 2.9, p. 56]. We
want to weaken the assumptions such that the norm of X+ is not necessarily
related to the norm of X0. This is in particular necessary for Maxwell’s equations.

4.1 Motivation

In Section 6.4 we point out that it is not possible to associate an “ordinary”
Gelfand triple to the spatial differential operator of Maxwell’s equations.

We will have the following setting: Let X0 be a Hilbert space with the inner
product ⟨·, ·⟩X0 and ⟨·, ·⟩X+ be another inner product on X0 (not necessarily

related to ⟨·, ·⟩X0
), which is defined on a dense (w.r.t. ∥·∥X0

) subspace D̃+ of
X0. We denote the completion of D̃+ w.r.t. ∥·∥X+

(∥f∥X+
:=
√
⟨f, f⟩X+

) by X+.
This completion is, by construction a Hilbert space with the extension of ⟨·, ·⟩X+

,

for which we use the same symbol. Now we have D̃+ is dense in X0 w.r.t. ∥·∥X0

and dense in X+ w.r.t. ∥·∥X+ . Figure 4.1 illustrates this setting.

Note that X+, as a Hilbert space, is automatically reflexive. For the further
construction the crucial property of X+ is its reflexivity. Hence, we will weaken
the previous setting such that X+ is only a reflexive Banach space:

57



58 CHAPTER 4. QUASI GELFAND TRIPLES

• X0 Hilbert space endowed with ⟨·, ·⟩X0 .

• D̃+ dense subspace of X0 (w.r.t. ∥·∥X0
).

• ∥·∥X+
another norm defined on D̃+.

• X+ completion of D̃+ with respect to ∥·∥X+
is reflexive.

X+

X0

D̃+

Figure 4.1: Setting of X0, D̃+ and X+.

Example 4.1.1. Let X0 = ℓ2(Z\{0}) with the standard inner product ⟨x, y⟩X0 =∑∞
n=1 xnyn + x−ny−n. We define the inner product

⟨x, y⟩X+
:=

∞∑
n=1

n2xnyn +
1

n2
x−ny−n

and the set D̃+ := {f ∈ X0 | ∥f∥X+
< +∞}. Clearly, this inner product is well-

defined on D̃+. Let ei denote the sequence which is 1 on the i-th position and 0
elsewhere. Since {ei | i ∈ Z \ {0}} is a orthonormal basis of X0 and contained
in D̃+, D̃+ is dense in X0. The sequence

(∑n
i=1 e−i

)
n∈N is a Cauchy sequence

with respect to ∥·∥X+ , but not with respect to ∥·∥X0 .

Definition 4.1.2. We define

∥g∥X− := sup
f∈D̃+\{0}

|⟨g, f⟩X0
|

∥f∥X+

for g ∈ X0 and D− :=
{
g ∈ X0

∣∣∣ ∥g∥X− < +∞
}
.

We denote the completion of D− w.r.t. ∥·∥X− by X−. We will also denote the
extension of ∥·∥X− to X− by ∥·∥X− .

Remark 4.1.3. By definition of D− we can identify every g ∈ D− with an element
of X ′

+ by the continuous extension of

ψg :

{
D+ → C,
f 7→ ⟨g, f⟩X0 ,
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on X+. We denote this extension again by ψg. By definition of D− we have
∥ψg∥X ′

+
= ∥g∥X− for g ∈ D−. Hence, we can extend the isometry

Ψ:

{
D− → X ′

+,
g 7→ ψg,

by continuity on X−. So X− can be seen as the closure of D− in X ′
+.

We can define a dual pairing of between X+ and X− by

⟨g, f⟩X−,X+
:= ⟨Ψg, f⟩X ′

+,X+
.

However, this does not necessarily make (X+,X−) a dual pair in the sense of
Definition 1.3.1, because we do not know whether Ψ is surjective.

Lemma 4.1.4. D− is complete with respect to ∥g∥X−∩X0
:=
√
∥g∥2X0

+ ∥g∥2X−
.

Proof. Let (gn)n∈N be a Cauchy sequence in D− with respect to ∥·∥X−∩X0
. Then

(gn)n∈N is a convergent sequence in X0 (w.r.t. ∥·∥X0
) and a Cauchy sequence in

D− (w.r.t. ∥·∥X−). We denote the limit in X0 by g0. By definition of ∥·∥X− we

obtain for f ∈ D̃+

|⟨g0, f⟩X0
| = lim

n→∞
|⟨gn, f⟩X0

| ≤ lim
n→∞

∥gn∥X−∥f∥X+
≤ C∥f∥X+

and consequently g0 ∈ D−.
Let ϵ > 0 be arbitrary. Since (gn)n∈N is a Cauchy sequence with respect to

∥·∥X− , there is an n0 ∈ N such that for all f ∈ D̃+ with ∥f∥X+
= 1

|⟨gn − gm, f⟩X0
| ≤ ϵ

2
, if n,m ≥ n0

holds true. Furthermore, for every f ∈ D̃+ there exists an mf ≥ n0 such that

|⟨g0 − gmf
, f⟩X0 | ≤

ϵ∥f∥X+

2 , because gm → g0 w.r.t. ∥·∥X0 . This yields

|⟨g0 − gn, f⟩X0 |
∥f∥X+

≤
|⟨g0 − gmf

, f⟩X0
|

∥f∥X+

+
|⟨gmf

− gn, f⟩X0
|

∥f∥X+

≤ ϵ, if n ≥ n0.

Since the right-hand-side is independent of f , we obtain

∥g0 − gn∥X− = sup
f∈D̃+\{0}

|⟨g0 − gn, f⟩X0
|

∥f∥X+

≤ ϵ, if n ≥ n0.

Hence, g0 is also the limit of (gn)n∈N with respect to ∥·∥X− and consequently
the limit of (gn)n∈N with respect to ∥·∥X−∩X0

. ❑

Strictly speaking D̃+ and D− are subsets of X0, but most of the time we
rather want to regard them as subsets of X+ and X−, respectively. Hence,
introduce the following embedding mappings

ι̃+ :

{
D̃+ ⊆ X+ → X0,

f 7→ f,
and ι− :

{
D− ⊆ X− → X0,

g 7→ g.
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This allows us to distinguish between f ∈ D̃+ as element of X+ and ι̃+(f) as
element of X0, if necessary. Clearly, the same for g ∈ D−.

Lemma 4.1.5. The embedding ι̃+ is a densely defined operator with ran ι̃+ is
dense in X0 and ker ι̃+ = {0}. Furthermore, the embedding ι− is closed and
ker ι− = {0}.

Proof. By assumption on D̃+ and definition of X+ the embedding ι̃+ is densely
defined and has a dense range. Clearly, ker ι̃+ = {0} and ker ι− = {0}. By
Lemma 4.1.4 ι− is closed. ❑

Lemma 4.1.6. Let ι̃∗+ = ι̃
∗X0×X′

+

+ denote the adjoint relation (w.r.t. the dualities
(X0,X0) and (X+,X ′

+)) of ι̃+. Then ι̃
∗
+ is an operator (single-valued, i.e. mul ι̃∗+ =

{0}) and ker ι̃∗+ = {0}. Its domain coincides with D− and ι̃∗+ι− : D− ⊆ X− → X ′
+

is isometric.
If ker ι̃+ = {0}, then ran ι̃∗+ is dense in X ′

+.

Proof. The density of the domain of ι̃+ yields mul ι̃∗+ = (dom ι̃+)
⊥ = {0}, and

ran ι̃+
X0

= X0 yields ker ι̃∗+ = {0}. The following equivalences show dom ι̃∗+ =
D−:

g ∈ dom ι̃∗+ ⇔ ⟨g, ι̃+f⟩X0 is continuous in f ∈ D̃+ w.r.t. ∥·∥X+

⇔ sup
f∈D̃+\{0}

|⟨g, f⟩X0
|

∥f∥X+

< +∞

⇔ g ∈ D−.

For g ∈ D− ⊆ X− we have

∥g∥X− = sup
f∈D̃+\{0}

|⟨ι−g, f⟩X0 |
∥f∥X+

= sup
f∈D̃+\{0}

|⟨ι̃∗+ι−g, f⟩X ′
+,X+
|

∥f∥X+

= ∥ι̃∗+ι−g∥X ′
+
,

which proves that ι̃∗+ι− is isometric.
Note that the reflexivity of X+ implies ι̃+ = ι̃∗∗+ . If ker ι̃+ = {0}, then the

following equation implies the density of ran ι̃∗+ in X ′
+

{0} = ker ι̃+ = ker ι̃∗∗+ = (ran ι̃∗+)
⊥. ❑

Remark 4.1.7. As mentioned in Remark 4.1.3 every g ∈ D− can be regarded as
an element of X ′

+ by ψg. Let g ∈ D−, f ∈ X+ and (fn)n∈N in D̃+ converging to
f in X+ (w.r.t. ∥·∥X+). Since D− = dom ι̃∗+, we have

⟨ψg, f⟩X ′
+,X+

= lim
n→∞

⟨ι−g, ι̃+fn⟩X0 = ⟨ι̃∗+ι−g, f⟩X ′
+,X+

and consequently ψg = ι̃∗+ι−g. Hence, ΨD− = ι̃∗+ι−D−.

Proposition 4.1.8. The following assertions are equivalent.
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(i) There is a Hausdorff topological vector space (Z, T ) and two continuous
embeddings ϕX+ : X+ → Z and ϕX0 : X0 → Z such that the diagram

D̃+ X+

Z

D̃+ X0

ι̃+

id

ϕX+

ι̃−1
+

id
ϕX0

commutes.

(ii) If D̃+ ∋ fn → 0 w.r.t. ∥·∥X+
and limn→∞ fn exists w.r.t. ∥·∥X0

, then this

limit is also 0 and if D̃+ ∋ fn → 0 w.r.t. ∥·∥X0 and limn→∞ fn exists w.r.t.
∥·∥X+ , then this limit is also 0.

(iii) ι̃+ : D̃+ ⊆ X+ → X0, f 7→ f is closable (as an operator) and its closure is
injective.

(iv) D− is dense in X0 and dense in X ′
+, i.e. ΨD− is dense in X ′

+.

Proof. We will follow the strategy (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (i).

(i)⇒ (ii): Let (fn)n∈N be a sequence in D̃+ such that fn → f̂ w.r.t. X+ and
fn → f w.r.t. X0. Since T is coarser than both of the topologies induced by
these norms, we also have

f̂

fn

f

T

T
in Z.

Since T is Hausdorff, we conclude f = f̂ . Hence, if either f̂ or f is 0, then
also the other is 0.

(ii)⇒ (iii): If (fn, fn)n∈N is a sequence in ι̃+ that converges to (0, f) ∈ X+×X0,
then f = 0 by (ii). Hence, mul ι̃+ = {0} and consequently ι̃+ is closable. On
the other hand, if (fn, fn)n∈N is a sequence in ι̃+ that converges to (f, 0),
then f = 0 by (ii). Consequently, ker ι̃+ = {0} and ι̃+ is injective.

(iii)⇒ (iv): We have (dom ι̃∗+)
⊥ = mul ι̃∗∗+ = mul ι̃+. Since ι̃+ is closable, we

have mul ι̃+ = {0}, which implies that dom ι̃∗+ is dense in X0. By Lemma 4.1.6
dom ι̃∗+ coincides with D−, which gives the density of D− in X0.

The second assertion of Lemma 4.1.6 yields that ran ι̃∗+ is dense in X ′
+. By

Remark 4.1.7 we have ran ι̃∗+ = ΨD− and therefore the density of ΨD− in
X ′

+.

(iv)⇒ (i): Let Y := D− be equipped with

∥g∥Y := ∥g∥X−∩X0
=
√
∥g∥2X−

+ ∥g∥2X0
.
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We define Z := Y ′ as the (anti-)dual space of Y . Then we have

|⟨f, g⟩X0 | ≤ ∥f∥X0∥g∥X0 ≤ ∥f∥X0∥g∥Y for f ∈ X0, g ∈ Y
and |⟨f, ι̃∗+g⟩X+,X ′

+
| ≤ ∥f∥X+ ∥ι̃∗+g∥X ′

+︸ ︷︷ ︸
=∥g∥X−

≤ ∥f∥X+∥g∥Y for f ∈ X+, g ∈ Y.

Hence, ϕX0
: f 7→ ⟨f, ·⟩X0

and ϕX+
: f 7→ ⟨f, ι̃∗+·⟩X+,X ′

+
are continuous map-

pings from X0 and X+, respectively, into Z. The injectivity of these mappings
follows from the density of D− in X0 and D− in X ′

+ (ι̃∗+D− dense in X ′
+),

respectively. For f ∈ D̃+ we have

ϕX+
f = ⟨f, ι̃∗+·⟩X+,X ′

+
= ⟨ι̃+f, ·⟩X0

= ϕX0
◦ ι̃+f

and consequently the diagram in (i) commutes. ❑

If one and therefore all assertions in Proposition 4.1.8 are satisfied, then X+∩
X0 is defined as the intersection in Z and complete with the norm ∥·∥X+∩X0

:=√
∥·∥2X+

+ ∥·∥2X0
. Moreover, we define D+ as the closure of D̃+ in X+∩X0 (w.r.t.

∥·∥X+∩X0
). Note that although X+ ∩ X0 may depend on Z, D+ is independent

of Z. We will denote the extension of ι̃+ to D+ by ι+, which can be expressed
by ι+ = ι̃+. The adjoint ι∗+ coincides with ι̃∗+. Also D− does not change, if we

replace D̃+ by D+ in Definition 4.1.2 and all previous results in this section also
hold for D+ and ι+ instead of D̃+ and ι̃+, respectively. If ι̃+ is already closed,
then D+ = D̃+.

Lemma 4.1.9. Let one assertion in Proposition 4.1.8 be satisfied. Let Z = Y ′,

where Y = D− endowed with ∥g∥Y := ∥g∥X−∩X0
=
√
∥g∥2X−

+ ∥g∥2X0
(from

Proposition 4.1.8 (iv)⇒ (i)). Then we have the following characterization for
D+:

• D+ = dom ι∗−,

• D+ = X+ ∩ X0 in Y ′.

Proof. Note that for g ∈ D− we have g = (ι∗+)
−1ι∗+g and that ι∗+ι− is isometric

from D− = dom ι− ⊆ X− onto ran ι∗+ = dom(ι∗+)
−1 ⊆ X ′

+. The following
equivalences show the first assertion:

f ∈ dom ι∗− ⇔ D− ∋ g 7→ ⟨f, ι−g⟩X0
is continuous w.r.t. ∥·∥X−

⇔ D− ∋ g 7→ ⟨f, (ι∗+)−1ι∗+ι−g⟩X0 is continuous w.r.t. ∥·∥X−

⇔ dom(ι∗+)
−1 ∋ h 7→ ⟨f, (ι∗+)−1h⟩X0

is continuous w.r.t. ∥·∥X ′
+

⇔ f ∈ dom
(
(ι∗+)

−1
)∗

= dom ι−1
+ = ran ι+ = D+.

For the second characterization we define P+ := X+ ∩ X0 and we define P−
analogously to D− in Definition 4.1.2:

∥g∥P− := sup
f∈P+\{0}

|⟨g, f⟩X0
|

∥f∥X+

and P− := {g ∈ X0 | ∥g∥P− < +∞}.
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Clearly, ∥g∥X− ≤ ∥g∥P− for g ∈ P− and consequently P− ⊆ D−. Furthermore,
we can define ιP+ : P+ ⊆ X+ → X0, f 7→ f analogously to ι̃+. Note that ιP+ is
closed due the completeness of (X+∩X0, ∥·∥X+∩X0

). Then we have dom ι∗P+
= P−

and ι̃+ ⊆ ιP+
and therefore ι∗P+

⊆ ι̃∗+. For g ∈ D− and f ∈ P+ we have, by
definition of P+ = X+ ∩ X0 in Z,

|⟨g, f⟩X0
| = |⟨ι̃∗+g, f⟩X ′

+,X+
| ≤ ∥ι̃∗+g∥X ′

+
∥f∥X+

= ∥g∥X−∥f∥X+
,

which yields ∥g∥P− ≤ ∥g∥X− . Hence, P− = D−, ι
∗
P+

= ι̃∗+ and ιP+
= ι̃+, which

is equivalent to P+ = X+ ∩ X0 = D̃+

X+∩X0

= D+. ❑

Theorem 4.1.10. Let one assertion in Proposition 4.1.8 be satisfied. Then
the continuous extension of ι∗+ι− denoted by ι∗+ι− equals Ψ. Moreover, Ψ is
surjective and (X+,X−) is a complete dual pair with

⟨g, f⟩X−,X+
:= ⟨Ψg, f⟩X ′

+,X+
.

Proof. We have already shown, that ι∗+ι−g = Ψg for g ∈ D−. Since D− is dense

in X−, we also have ι∗+ι−g = Ψg for g ∈ X−.
If one assertion in Proposition 4.1.8 is true, then all of them are true. Hence,

ΨD− is dense in X ′
+ and because Ψ is isometric ranΨ is closed and therefore

ranΨ = X ′
+.

Since Ψ is an isomorphism between X− and X ′
+, it immediately follows that

(X+,X−) is a complete dual pair with the dual pairing ⟨·, ·⟩X−,X+ . ❑

Remark 4.1.11. For f ∈ D+ and g ∈ D− we have

⟨g, f⟩X−,X+
= ⟨Ψg, f⟩X ′

+,X+
= ⟨ι∗+ι−g, f⟩X ′

+,X+
= ⟨ι−g, ι+f⟩X0

= ⟨g, f⟩X0
.

Since these two sets are dense in X+ and X− respectively, we have for f ∈ X+

and g ∈ X−

⟨g, f⟩X−,X+
= lim

(n,m)→(∞,∞)
⟨gn, fm⟩X0

,

where (fm)m∈N is a sequence in D+ that converges to f in X+ and (gn)n∈N is a
sequence in D− that converges to g in X−.

4.2 Definition and Results

The previous section leads to the following definition.

Definition 4.2.1. Let (X+,X−) be a complete dual pair and X0 be a Hilbert
space. Furthermore, let ι+ : dom ι+ ⊆ X+ → X0 and ι− : dom ι− ⊆ X− → X0

be densely defined, closed, and injective linear mappings with dense range. We
call (X+,X0,X−) a quasi Gelfand triple, if

⟨g, f⟩X−,X+
= ⟨ι−g, ι+f⟩X0

(4.1)

for all f ∈ dom ι+ and g ∈ dom ι−, and dom ι∗+ = ran ι−. The space X0 will be
referred as pivot space.
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X0

ra
n
ι+

ran
ι−

ran ι+
∩

ran ι−

X+

dom ι+

ι+

X−
dom ι−

ι−

Figure 4.2: Illustration of a quasi Gelfand triple

Figure 4.2 illustrates the setting of a quasi Gelfand triple. Contrary to the
previous section we will regard the adjoint of ι+ and ι− with respect to the
complete dual pairs (X+,X−) and (X0,X0). Therefore, ι

∗
+ is a densely defined

operator from X0 to X− and ι∗− is a densely defined operator from X0 to X+.
We could not do this before, because we did not know from the beginning that
(X+,X−) is a complete dual pair.

Example 4.2.2. Let X+ = Lp(R), X− = Lq(R) and X0 = L2(R), where p ∈
(1,+∞) and 1

p + 1
q = 1. Then (X+,X−) is a complete dual pair. Note that

Lp(R) ∩ L2(R) is already well-defined. We can define

ι+ :

{
Lp(R) ∩ L2(R) ⊆ Lp(R) → L2(R),

f 7→ f,

and ι− :

{
Lq(R) ∩ L2(R) ⊆ Lq(R) → L2(R),

g 7→ g.

These mapping are densely defined, injective and closed with dense range. By
definition of the dual pairing of (Lp(R), Lq(R)) we have

⟨g, f⟩Lq(R),Lp(R) =

∫
R
gf dλ = ⟨g, f⟩X0

= ⟨ι−g, ι+f⟩X0

for g ∈ Lq(R) ∩ L2(R) and f ∈ Lp(R) ∩ L2(R). Hence, (Lp(R), L2(R), Lq(R)) is a
quasi Gelfand triple.

Note that the mapping ι+ gives us an identification of dom ι+ and ran ι+.
Hence, we can introduce the norm of X+ on ran ι+ by ∥f∥X+

= ∥ι−1
+ f∥X+

for
f ∈ ran ι+. Then the completion of ran ι+ with respect to ∥·∥X+

is isometrically
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X+ X−

X0

D+ D−

D+∩D−

Figure 4.3: Illustration of a quasi Gelfand triple, where D+ = ran ι+ and
D− = ran ι−.

isomorphic to X+. Accordingly, we can do the same for X−. This justifies the
following definition and Figure 4.3

Definition 4.2.3. For a quasi Gelfand triple (X+,X0,X−) we define

X+ ∩ X0 := ran ι+ and X− ∩ X0 := ran ι−.

If either ι+ or ι− is continuous, then a quasi Gelfand triple is an “ordinary”
Gelfand triple. Clearly, every “ordinary” Gelfand triple is also a quasi Gelfand
triple.

The condition dom ι∗+ = ran ι− is not really necessary as this condition can
always be forced as we will see later. Actually, I believe that this condition is
automatically implied by all the others, but I could not find a proof. Moreover, the
next lemma shows that we can also ask for the converse condition dom ι∗− = ran ι+
instead. Note that from (4.1) we can immediately see that dom ι∗+ ⊇ ran ι− and
dom ι∗− ⊇ ran ι+. Hence, for f ∈ dom ι+ and g ∈ dom ι− we have

⟨g, f⟩X−,X+
= ⟨ι−g, ι+f⟩X0

=

{
⟨ι∗+ι−g, f⟩X−,X+ ,

⟨g, ι∗−ι+f⟩X−,X+
,

(4.2)

which implies ι∗+ι−g = g and ι∗−ι+f = f .

Lemma 4.2.4. Let (X+,X0,X−) with ι+ and ι− satisfy all conditions of Defi-
nition 4.2.1 except dom ι∗+ = ran ι−. Then

dom ι∗+ = ran ι− ⇔ dom ι∗− = ran ι+.

In particular, if (X+,X0,X−) is a quasi Gelfand triple, then also dom ι∗− = ran ι+
holds true.

The proof of this is basically the first part of the proof of Lemma 4.1.9.
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Proof. Let dom ι∗+ = ran ι−. The following equivalences

f ∈ dom ι∗− ⇔ dom ι− ∋ g 7→ ⟨f, ι−g⟩X0 is continuous w.r.t. ∥·∥X−

⇔ dom ι− ∋ g 7→ ⟨f, (ι∗+)−1 ι∗+ι−g︸ ︷︷ ︸
=g

⟩X0
is continuous w.r.t. ∥·∥X−

⇔ f ∈ dom
(
(ι∗+)

−1
)∗

= dom ι−1
+ = ran ι+

imply dom ι∗− = ran ι+.
The other implication follows analogously. ❑

In contrast to “ordinary” Gelfand triple, the setting for quasi Gelfand triple
is somehow “symmetric”, i.e. the roles of X+ and X− are interchangeable, since
neither of the embeddings ι+ and ι− has to be continuous, as indicated in the
beginning of this section.

Lemma 4.2.5. Let (X+,X0,X−) with ι+ and ι− satisfy all conditions of Defini-
tion 4.2.1 except dom ι∗+ = ran ι−. Then there exists an extension ι̂− of ι− that
respects (4.1) and satisfies dom ι∗+ = ran ι̂−. In particular, (X+,X0,X−) with ι+
and ι̂− forms a quasi Gelfand triple.

Proof. Note that ι∗+ι−g = g. Hence, ι∗+ ⊇ ι−1
− and (ι∗+)

−1 ⊇ ι−. We define ι̂− as
(ι∗+)

−1. Then clearly ran ι̂− = dom ι∗+. For f ∈ dom ι+ and g ∈ dom ι̂− we have

⟨ι̂−g, ι+f⟩X0
= ⟨ι∗+ι̃−g, f⟩X−,X+

= ⟨g, f⟩X−,X+
. ❑

Remark 4.2.6. If (X+,X0,X−) is a quasi Gelfand triple and (X+, X̃−) is another

dual pair for X+, then also (X+,X0, X̃−) is a quasi Gelfand triple.

Lemma 4.2.7. Let (X+,X0,X−) be a quasi Gelfand triple. Then

ι∗+ = ι−1
− and ι∗− = ι−1

+ .

Proof. By (4.2) we have ι∗+ι−g = g for all g ∈ dom ι+. Since ran ι− = dom ι∗+
(by assumption), we conclude that ι∗+ = ι−1

− .
Analogously, the second equality can be shown. ❑

Theorem 4.2.8. Let X+ be a reflexive Banach space and X0 be a Hilbert space
and ι+ : dom ι+ ⊆ X+ → X0 be a densely defined, closed, and injective linear
mapping with dense range. Then there exists a Banach space X− and a mapping
ι− such that (X+,X0,X−) is a quasi Gelfand triple.

In particular, X− is given by Definition 4.1.2, where D+ = ran ι+.

Proof. We will identify dom ι+ with ran ι+ and denote it by D+. Then item (iii)
of Proposition 4.1.8 is satisfied. Hence, the corresponding D− (Definition 4.1.2)
is dense in X0 and its completion X− (w.r.t. to ∥·∥X−) establishes the complete
dual pair (X+,X−), by Theorem 4.1.10. The mapping

ι− :

{
D− ⊆ X− → X0,

g 7→ g,
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is densely defined and injective by construction. By the already shown ran ι− =
D− is dense in X0. Finally, by Lemma 4.1.5 ι− is closed and by Lemma 4.1.6
dom ι∗+ = D− = ran ι−. ❑

Remark 4.2.9. By Theorem 4.2.8 the setting in the beginning of this chapter
establishes a quasi Gelfand triple, if one assertion of Proposition 4.1.8 is satisfied.

Until the end of this chapter we will assume that (X+,X0,X−) is a quasi
Gelfand triple and we will identify dom ι+ with ran ι+ and denote it by D+.
The set D− is defined by Definition 4.1.2 for D+. This set coincides with ran ι−,
which we will identify with dom ι−.

Proposition 4.2.10. The space D+ ∩D− is complete with respect to

∥·∥X+∩X− :=
√
∥·∥2X+

+ ∥·∥2X−
.

Proof. For f ∈ D+ ∩D− we have

∥f∥2X0
= |⟨f, f⟩X0

| = |⟨f, f⟩X−,X+
| ≤ ∥f∥X−∥f∥X+

≤ ∥f∥2X+∩X−
.

Hence, every Cauchy sequence in D+ ∩D− with respect to ∥·∥X+∩X− is also a
Cauchy sequence with respect to ∥·∥X0

, ∥·∥X+
and ∥·∥X− .

Let (fn)n∈N be a Cauchy sequence in D+ ∩D− with respect to ∥·∥X+∩X− .
By the closedness of ι+ the limit with respect to ∥·∥X0

and the limit with respect
to ∥·∥X+

coincide. The same argument for ι− yields that the limit with respect
to ∥·∥X0

and the limit with respect ∥·∥X− also coincide. Therefore, all these
limits have to coincide and (fn)n∈N converges to that limit in D+ ∩D− w.r.t.
∥·∥X+∩X− . ❑

Lemma 4.2.11. The operator

[
ι+ ι−

]
:

 D+ ×D− ⊆ X+ ×X− → X0,[
f
g

]
7→ f + g,

is closed.

Proof. Let
(([

fn
gn

]
, zn
))

n∈N be a sequence in
[
ι+ ι−

]
that converges to

([
f
g

]
, z
)

in X+ ×X− ×X0. Then we have

∥z∥2X0
= lim

n→∞
∥fn + gn∥2X0

= lim
n→∞

(
∥fn∥2X0

+ ∥gn∥2X0
+ 2Re⟨fn, gn⟩X0

)
.

Since 2Re⟨fn, gn⟩X0 converges to 2Re⟨f, g⟩X+,X− , we conclude that ∥fn∥X0 and
∥gn∥X0 are bounded. Hence, there exists a subsequence of (fn)n∈N that converges
weakly to an f̃ ∈ X0. Moreover, by Lemma A.3.3 we can pass on to a further
subsequence (fn(k))k∈N such that

(
1
j

∑j
k=1 fn(k)

)
j∈N converges to f̃ strongly

(w.r.t. ∥·∥X0
). The sequence

(
1
j

∑j
k=1 fn(k)

)
j∈N has still the limit f in X+ (w.r.t.

∥·∥X+
) and because ι+ is closed we conclude that f = f̃ ∈ D+. By linearity
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we also have 1
j

∑j
k=1 gn(k) → z − f in X0 for the same subsequence. Since

1
j

∑j
k=1 gn(k) is a Cauchy sequence in both X− and X0, the closedness of ι− gives

that g = z − f ∈ D−. Hence, z =
[
ι+ ι−

] [
f
g

]
and the operator

[
ι+ ι−

]
is

closed. ❑

Proposition 4.2.12. D+ ∩D− is dense in X0 with respect to ∥·∥X0
.

Proof. By dom ι∗± = ran ι∓ = D∓ (Lemma 4.2.4) we have

X0 =
(
mul

[
ι+ ι−

] )⊥
= dom

[
ι+ ι−

]∗
= dom ι∗+ ∩ dom ι∗− = D− ∩D+. ❑

4.3 Quasi Gelfand Triple with Hilbert Spaces

In this section we will regard a quasi Gelfand triple (X+,X0,X−), where X+

and X− (and of course X0) are Hilbert spaces. Maybe also these results can
be proven for general quasi Gelfand triple, but I could not find a substitute for
Theorem 4.3.1.

For a quasi Gelfand triple (X+,X0,X−) consisting of Hilbert spaces, there
exists a unitary mapping Ψ from X− to X+ satisfying

⟨g, f⟩X−,X+
= ⟨Ψg, f⟩X+

and ⟨f, g⟩X+,X− = ⟨Ψ−1f, g⟩X− .

We will refer to this mapping as the duality map of the quasi Gelfand triple.

Theorem 4.3.1 (J. von Neumann). Let T be a closed linear operator from the
Hilbert space X to the Hilbert space Y . Then T ∗T and TT ∗ are self-adjoint, and
(IX + T ∗T ) and (IY + TT ∗) are boundedly invertible.

Note that here the adjoint T ∗ is calculated with respect to the “natural” dual
pairs (X,X) and (Y, Y ), i.e. T ∗ = T ∗Y ×X .

Proof. Since T ∗ =
[

0 IY
−IX 0

]
T⊥, we have T ⊕

[
0 −IX
IY 0

]
T ∗ = X × Y . Hence, for

[ h0 ] ∈ X × Y there are unique x ∈ domT and y ∈ domT ∗ such that[
h
0

]
=

[
x
Tx

]
+

[
−T ∗y
y

]
. (4.3)

Consequently, h = x− T ∗y and y = −Tx, which implies x ∈ domT ∗T and

h = x+ T ∗Tx.

Because of the uniqueness of the decomposition in (4.3), x ∈ domT ∗T is uniquely
determined by h ∈ X. Therefore, (IX +T ∗T )−1 is a well-defined and everywhere
defined operator.

For h1, h2 ∈ X, we define x1 := (IX + T ∗T )−1h1 and x2 := (IX + T ∗T )−1h2.
Then x1, x2 ∈ domT ∗T and, by the closedness of T , T ∗∗ = T . Hence,

⟨h1, (IX + T ∗T )−1h2⟩ = ⟨(IX + T ∗T )x1, x2⟩ = ⟨x1, x2⟩+ ⟨T ∗Tx1, x2⟩
= ⟨x1, x2⟩+ ⟨Tx1, Tx2⟩ = ⟨x1, x2⟩+ ⟨x1, T ∗Tx2⟩
= ⟨x1, (IX + T ∗T )x2⟩ = ⟨(IX + T ∗T )−1h1, h2⟩,
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which yields that (IX+T ∗T )−1 is self-adjoint. Therefore (IX+T ∗T ) and T ∗T are
also self-adjoint. Moreover, (IX +T ∗T )−1 is bounded as a closed and everywhere
defined operator.

By TT ∗ = (T ∗)∗(T ∗) the other statements follow by the already shown. ❑

Applying this theorem to S = λT implies that R− is contained in the resolvent
set of T ∗T .

Note that we previously regarded the adjoint of ι+ with respect to the dual
pairs (X0,X0) and (X+,X−). However, in order to apply Theorem 4.3.1 we
have to regard the adjoint with respect to (X0,X0) and (X+,X+). Hence, we

will emphazise this difference by the notation ι
∗X0×X+

+ , which was introduced in
Definition 2.2.1.

Corollary 4.3.2. The set D+ ∩D− is dense in X+ and X− with respect to their
corresponding norms.

Proof. Applying Theorem 4.3.1 to ι+ yields ι
∗X0×X+

+ ι+ is self-adjoint. Note that

by Lemma 2.2.4 we have ι
∗X0×X+

+ = Ψι
∗X0×X−
+ = Ψι∗+, where Ψ is the duality map

introduced in the beginning of this section. Hence, dom ι
∗X0×X+

+ ι+ = dom ι∗+ι+
is dense in X+. By Lemma 4.2.4 dom ι∗+ = D−, consequently

dom ι∗+ι+ = D+ ∩D−. (4.4)

An analogous argument for ι− yields D+ ∩D− is dense in X−. ❑

Corollary 4.3.3. D+ +D− = X0.

Proof. Applying Theorem 4.3.1 to ι+ gives that (IX0 +ι+ι
∗X0×X+

+ ) is onto. Hence,

for every x ∈ X0 there exists a gx ∈ dom ι+ι
∗X0×X+

+ ⊆ D− such that

x = gx︸︷︷︸
∈D−

+ ι+ι
∗X0×X+

+ gx︸ ︷︷ ︸
∈D+

.

Since gx ∈ dom ι+ι
∗X0×X+

+ , we have ι
∗X0×X+

+ gx ∈ D+ and consequently x ∈
D+ +D−. ❑

Note that D+∩D− with ∥·∥X+∩X− is complete and therefore a Banach space.
Since X+ and X0 are Hilbert spaces (in this section) we can define the inner
product

⟨g, f⟩X+∩X− := ⟨g, f⟩X+ + ⟨g, f⟩X−

on D+ ∩D−. This inner product induces the previous norm ∥·∥X+∩X− . Conse-
quently D+ ∩D− is a Hilbert space with ⟨·, ·⟩X+∩X− . For shorter notation we
denote D+ ∩D− as Z+. Note that Z+ is dense in X+, X0 and X− with respect
to their norms (up to embeddings). Hence, we can continuously embed all of
theses spaces into Z ′

+. For notational harmony we will denote Z ′
+ as Z−. Clearly

(Z+,Z−) is a complete dual pair. Moreover, by Theorem 4.2.8 and Remark 4.2.6
(Z+,X0,Z−) is a quasi Gelfand triple. Actually, it is even a Gelfand triple, as
the embedding of Z+ into X0 is continuous. Figure 4.4 illustrates this scenario.
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X+ X−

X0

D+ D−

D+∩D−

= Z+

Z−

Figure 4.4: quasi Gelfand triple embedded in Z−

Lemma 4.3.4. Z− = X+ + X− and

∥h∥Z− = inf
f+g=h

√
∥f∥2X+

+ ∥g∥2X−
.

Proof. Note that Z+ is a Hilbert space with ⟨z1, z2⟩Z+
= ⟨z1, z2⟩X+

+ ⟨z1, z2⟩X− .
Hence, there is a duality map Φ from Z− to Z+ and we can write

⟨h, z⟩Z−,Z+
= ⟨Φh, z⟩Z+

= ⟨Φh, z⟩X+
+ ⟨Φh, z⟩X− .

Furthermore, with the duality map Ψ from X− to X+ we have

⟨h, z⟩Z−,Z+ = ⟨Ψ−1Φh, z⟩X−,X+ + ⟨ΨΦh, z⟩X+,X−

and h = Ψ−1Φh+ΨΦh in Z−, where Ψ−1Φh ∈ X− and ΨΦh ∈ X+.
Let h ∈ Z−. Then for every f ∈ X+, g ∈ X− that satisfy h = f + g in Z−

we have

|⟨h, z⟩Z−,Z+ | = |⟨f, z⟩X+,X− + ⟨g, z⟩X−,X+ | ≤ |⟨f, z⟩X+,X− |+ |⟨g, z⟩X−,X+ |
≤ ∥f∥X+∥z∥X− + ∥g∥X−∥z∥X+

≤
√
∥f∥2X+

+ ∥g∥2X−

√
∥z∥2X−

+ ∥z∥2X+

=
√
∥f∥2X+

+ ∥g∥2X−
∥z∥Z+

,

which implies ∥h∥Z− ≤ infh=f+g

√
∥f∥2X+

+ ∥g∥2X−
. On the other hand

∥h∥2Z−
= ∥Φh∥2Z+

= ∥Φh∥2X+
+ ∥Φh∥2X−

= ∥Ψ−1Φh∥2X−
+ ∥ΨΦh∥2X+

finishes the proof. ❑
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Theorem 4.3.5. The intersection X+ ∩ X− in Z− is D+ ∩D−.

This means that area of X+ ∩ X− in Figure 4.4 outside of X0 is actually
empty.

Proof. Let h ∈ X+ ∩ X− ⊆ Z−, i.e. it exists an f ∈ X+ and a g ∈ X− such that

⟨h, z⟩Z−,Z+ = ⟨f, ι−1
− z⟩X+,X− = ⟨g, ι−1

+ z⟩X−,X+ for all z ∈ D+ ∩D−.

We define x := ι−1
+ z. Since z ∈ dom ι−1

− , we have x ∈ dom ι−1
− ι+. Note that

ι−1
− = ι∗+ and ι−1

+ Z+ = dom ι∗+ι+ (see (4.4)). Hence,

⟨f, ι∗+ι+x⟩X+,X− = ⟨g, x⟩X−,X+
for all x ∈ dom ι∗+ι+,

which implies (ι∗+ι+)
∗f = g and f ∈ dom(ι∗+ι+)

∗ = dom ι∗+ι+. In particular,

ι+f ∈ D+ ∩D−. Note that again by ι−1
− = ι∗+ we have ι−1

− ι+f = g. Therefore,
g ∈ dom ι− and ι+f = ι−g. This gives

⟨h, z⟩Z−,Z+ = ⟨ι+f, z⟩X0 = ⟨ι−g, z⟩X0 .

Therefore, h = f = g = ι+f = ι−g in Z−. ❑

4.4 Quasi Gelfand Triples and Boundary Triples

By Remark 2.4.8 the boundary spaces of a boundary triple are always Hilbert
spaces. Hence, without loss of generality we will again assume that (X+,X0,X−)
is a quasi Gelfand triple, where X+ and X− are Hilbert spaces.

Proposition 4.4.1. Let T be a bounded and boundedly invertible mapping from
X0 to another Hilbert space Y0. Then P+ := TD+ equipped with ∥f∥Y+

:=
∥T−1f∥X+

establishes a quasi Gelfand triple (Y+,Y0,Y−), where Y+ is the
completion of P+ and Y− is the completion of P− defined as in Definition 4.1.2,
where D+ is replaced by P+. Moreover, P− = (T ∗)−1D− and ∥g∥Y− = ∥T ∗g∥X−

for g ∈ P−.

Proof. The mapping T
∣∣
D+

: D+ → P+ is isometric and surjective, if we equip

its domain with ∥·∥X+
and its codomain with ∥·∥Y+

. So the linear (single-

valued) relation [ T 0
0 T ]ι+ =

{[
Tf
Tg

] ∣∣∣ [ fg ] ∈ ι+} ⊆ Y+ × Y0 is closed. Since this

linear relation coincides with the embedding ιP+
: P+ ⊆ Y+ → Y0, f 7→ f ,

Theorem 4.2.8 yields that (Y+,Y0,Y−) is a quasi Gelfand triple.
For g ∈ P− we have

∥g∥Y− = sup
h∈P+\{0}

|⟨g, h⟩Y0
|

∥h∥Y+

= sup
f∈D+\{0}

|⟨g, Tf⟩Y0
|

∥Tf∥Y+

= sup
f∈D+\{0}

|⟨T ∗g, f⟩X0
|

∥f∥X+

= ∥T ∗g∥X−

and consequently P− = (T ∗)−1D−. ❑
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Corollary 4.4.2. With the assumption from Proposition 4.4.1 the operators
T
∣∣
D+

and (T ∗)−1
∣∣
D−

can be continuously extended to unitary operators from X+

and X− to Y+ and Y− respectively. These extension will be denoted by T+ and
(T ∗)−1

− .

Proof. Since T
∣∣
D+

is isometric from D+ onto P+, we can extend this mapping by

continuity. This extension T+ is again isometric and since P+ ⊆ ranT+ is dense,
T+ has to be surjective. Analogously, we can show the same for (T ∗)−1. ❑

Note that we regard the dual pairs (X+,X−) and (Y+,Y−) and therefore the
adjoint of T+ is not its inverse. However, the adjoint with respect to (X+,X+)

and (Y+,Y+) denoted by T
∗Y+×X+

+ is the inverse of T+. Clearly, the same goes
for (T ∗)−1. In fact we have another identity for the adjoint of T+.

Corollary 4.4.3. Let us continue with the assumptions of Proposition 4.4.1
and Corollary 4.4.2. Then (T ∗

+)
−1 = (T ∗)−1

− and〈
(T ∗

+)
−1g, T+f

〉
Y−,Y+

= ⟨g, f⟩X−,X+

for g ∈ X− and f ∈ X+.

Proof. Note that for f ∈ D+ and g ∈ D− we have

⟨g, f⟩X−,X+ = ⟨g, f⟩X0 =
〈
(T ∗)−1g, Tf

〉
Y0

=
〈
(T ∗)−1g, Tf

〉
Y−,Y+

.

Hence, we can extend this by continuity for f ∈ X+ and g ∈ X−. ❑

Corollary 4.4.4. Let S, T be a bounded and boundedly invertible mappings
on X0. Then

[
ST
∣∣
D+

S(T∗)−1
∣∣
D−

]
is a densely defined closed surjective linear

operator from X+ ×X− to X0. In particular ran
[
ST
∣∣
D+

S(T∗)−1
∣∣
D−

]
= X0.

Proof. Let P+ = TD+. Then by Proposition 4.4.1 the corresponding P− can be
obtained by (T ∗)−1D−. The mapping

Ξ:


X+ ×X− ×X0 → Y+ × Y− ×X0,fg

z

 7→

T+ 0 0
0 (T ∗)−1

− 0
0 0 S−1

fg
z


is linear bounded and boundedly invertible, where Y± is the completion of P±
as in Proposition 4.4.1. Since (Y+,X0,Y−) is a quasi Gelfand triple,

[
ιP+ ιP−

]
=


 Tf

(T ∗)−1g
Tf + (T ∗)−1g

 : f ∈ D+, g ∈ D−


is closed in Y+×Y−×X0 (Lemma 4.2.11) and therefore also its pre-image under
Ξ

Ξ−1
([
ιP+ ιP−

])
=

T−1 0 0
0 T ∗ 0
0 0 S

 [ιP+ ιP−

]
=
[
STι+ S(T ∗)−1ι−

]
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is closed in X+ ×X− ×X0. Furthermore, by Corollary 4.3.3

ran
[
ST
∣∣
D+

S(T ∗)−1
∣∣
D−

]
= S ran

[
ιP+

ιP−

]
= SX0 = X0. ❑

Lemma 4.4.5. Let A0 be a densely defined, closed, skew-symmetric operator
on X0, Y0 be a Hilbert space, and let T : X0 → Y0 be a bounded and boundedly
invertible. Let (X+,X0,X−) be a quasi Gelfand triple such that ((X+,X−), B1, B2)
is a boundary triple for A∗

0. Furthermore, let Y+ and Y− be as defined in
Proposition 4.4.1. Then (Y+,Y0,Y−) is also a quasi Gelfand triple such that
((Y+,Y−), T+B1, (T

∗
+)

−1B2) is a boundary triple for A∗
0.

Proof. By Proposition 4.4.1 (Y+,Y0,Y−) is a quasi Gelfand triple. For x, y ∈
domA∗

0 we have, by Corollary 4.4.3,

2Re⟨A∗
0x, y⟩ = 2Re⟨B1x,B2y⟩X+,X− = 2Re⟨T+B1x, (T

∗
+)

−1B2y⟩Y+,Y− .

Since T+ : X+ → Y+ and (T ∗
+)

−1 : X− → Y− are surjective, the surjectivity of[
T+B1

(T∗
+)−1B2

]
=
[
T+ 0

0 (T∗
+)−1

] [
B1

B2

]
follows from the surjectivity of

[
B1

B2

]
. ❑

The following result is a generalization of [28, Theorem 2.6] for quasi Gelfand

triples and also fixes some minor issues, like the closedness of
[
V1
∣∣
B+∩B0

V2
∣∣
B−∩B0

]
as an operator from B+ × B− to K. This theorem is the main tool to justify
existence and uniqueness of solutions for port-Hamiltonian systems.

Theorem 4.4.6. Let (B+,B0,B−) be a quasi Gelfand triple, A0 be a closed
skew-symmetric operator, ((B+,B−), B1, B2) be a boundary triple for A∗

0, and K
be another Hilbert space. For V1, V2 ∈ Lb(B0,K) we define

D :=

{
a ∈ domA∗

0

∣∣∣∣B1a,B2a ∈ B0 and
[
V1 V2

] [B1

B2

]
a = 0

}
and the operator A := A∗

0

∣∣
D
. If

(i)
[
V1
∣∣
B0∩B+

V2
∣∣
B0∩B−

]
is closed as an operator from B+ × B− to K,

(ii) ker
[
V1 V2

]
is dissipative as linear relation on B0,

(iii) V1V
∗
2 + V2V

∗
1 ≥ 0 as operator on K,

then A is a generator of a contraction semigroup.

Proof. It is sufficient to show that A is closed, and A and A∗ are dissipative.

Step 1. Showing that A is closed and dissipative. We have

a ∈ D ⇔
[
B1

B2

]
a ∈ (B0 × B0) ∩ ker

[
V1 V2

]
⇔
[
B1

B2

]
a ∈ ker

[
V1
∣∣
B0∩B+

V2
∣∣
B0∩B−

]
︸ ︷︷ ︸

=:Θ

.
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We can write

Θ =

{[
p
q

]
∈ B+ × B−

∣∣∣∣ p ∈ B0, q ∈ B0 and V1q + V2p = 0

}
.

Since (B+,B0,B−) is a quasi Gelfand triple we have for [ pq ] ∈ Θ

Re⟨q, p⟩B−,B+
= Re⟨q, p⟩B0

≤ 0,

which implies the dissipativity of A by Corollary 2.4.11. Assumption (i) implies
that Θ is closed in B+×B−, which implies the closedness of A by Corollary 2.4.11.

Step 2. Showing that A∗ is dissipative. By Corollary 2.4.11 we can characterize
the domain of A∗ by

d ∈ domA∗ ⇔
[
B1

B2

]
d ∈

[
0 I
I 0

]
Θ⊥B−×B+

⇔
[
B2

B1

]
d ∈ ran

[(
V1
∣∣
B0∩B+

)∗K×B−(
V2
∣∣
B0∩B−

)∗K×B+

]B−×B+

.

The second equivalence needed the closedness in assumption (i), since (kerT )⊥ =
ranT ∗ for a linear relation (or even unbounded operator) T is not true in general.

Hence, by Lemma 4.2.7(
V1
∣∣
B0∩B+

)∗K×B− = (V1ι+)
∗ = ι∗+V

∗
1 = ι−1

− V ∗
1 = V ∗

1

∣∣
V ∗
1

−1(B0∩B−)
,

where ι+ : B+ ∩B0 ⊆ B+ → B0 and ι− : B− ∩B0 ⊆ B− → B0 are the embeddings
of the quasi Gelfand triple. Analogously, we have(

V2
∣∣
B0∩B−

)∗K×B+ = (V2ι−)
∗ = ι∗−V

∗
2 = ι−1

+ V ∗
2 = V2

∣∣
V ∗
2

−1(B0∩B+)
.

Hence, for

[
x
y

]
∈ ran

[
(V1
∣∣
B0∩B+

)
∗K×B−

(V2
∣∣
B0∩B−

)
∗K×B+

]

=

{[
V ∗
1

V ∗
2

]
k

∣∣∣∣ k ∈ V ∗
1
−1(B0 ∩ B−) ∩ V ∗

2
−1(B0 ∩ B+)

}
,

we have

Re⟨x, y⟩B−,B+
= Re⟨V ∗

1 k, V
∗
2 k⟩B−,B+

= Re⟨V ∗
1 k, V

∗
2 k⟩B0

= Re⟨V2V ∗
1 k, k⟩K ≥ 0.

Therefore, Θ⊥ is accretive and by Corollary 2.4.11 also A0

∣∣
domA∗ is accretive,

which yields A∗ = −A0

∣∣
domA∗ is dissipative. ❑
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Remark 4.4.7. If we are already satisfied with the operator closure A is a
generator (instead of A) in the previous theorem, then we can replace condition
(i) by

ker
[
V1
∣∣
B0∩B+

V2
∣∣
B0∩B−

]
⊆ ker

[
V1
∣∣
B0∩B+

V2
∣∣
B0∩B−

]B+×B−

, (4.5)

where
[
V1|B0∩B+

V2|B0∩B−

]
is the closure as linear relation (possibly multi-valued).

Clearly, if (4.5) holds, then there is already equality.

Example 4.4.8. Let (B+,B0,B−) be a quasi Gelfand triple that satisfies all
conditions of Theorem 4.4.6 and let M ∈ Lb(B0) be coercive (i.e. M ≥ cI, c > 0).
Then V1 := I, V2 :=M fulfill all conditions of Theorem 4.4.6:

(i) Setting S =M
1
2 and T =M− 1

2 in Corollary 4.4.4 implies the closedness

of
[
I
∣∣
B0∩B+

M
∣∣
B0∩B−

]
.

(ii) For [ xy ] ∈ ker
[
V1 V2

]
we have x = −My. Since M is positive this yields

Re⟨x, y⟩B0 = Re⟨−My, y⟩B0 = −⟨My, y⟩B0 ≤ 0.

(iii) V1V
∗
2 + V2V

∗
1 =M∗ +M = 2ReM ≥ 0.

Moreover, Corollary 4.4.4 also implies the surjectivity of
[
I
∣∣
B0∩B+

M
∣∣
B0∩B−

]
.

Clearly, also V1 :=M , V2 := I fulfill all conditions.

Lemma 4.4.9. Let the assumptions of Theorem 4.4.6 be true. Additionally,
let V1, V2 be boundedly invertible and we replace condition (iii) by the stricter
condition V1V

∗
2 is coercive, i.e. V1V

∗
2 ≥ cI, for c > 0. The adjoint of A is then

given by A∗ = −A∗
0 restricted to

domA∗ = {x ∈ domA0 |B1x,B2x ∈ B0, (V ∗
2 )

−1B1x− (V ∗
1 )

−1B2x = 0}.

Proof. In the proof of Theorem 4.4.6 we characterized the domain of A∗ by

a ∈ domA∗

⇔
[
B1a
B2a

]
∈
{[
V ∗
2 k
V ∗
1 k

] ∣∣∣∣ k ∈ V ∗
1
−1(B− ∩ B0) ∩ V ∗

2
−1(B+ ∩ B0)

}B+×B−

.

First we show that the set on the right-hand-side is already closed: Let (kn)n∈N
be a sequence in V ∗

1
−1(B+ ∩ B0) ∩ V ∗

2
−1(B− ∩ B0) such that[

V ∗
2 kn
V ∗
1 kn

]
→
[
f
g

]
in B+ × B−.

Then we have

∥kn∥2K ≤
1

c2
⟨kn, V1V ∗

2 kn⟩K = ⟨V ∗
1 kn, V

∗
2 kn⟩B0

= ⟨V ∗
1 kn, V

∗
2 kn⟩B−,B+ → ⟨g, f⟩B−,B+ ,
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which implies that (kn)n∈N is bounded in K. Therefore, there exists a weakly
convergent subsequence with limit k ∈ K and by Lemma A.3.3 there is even
a further subsequence such that k is the strong limit of k̃N := 1

N

∑N
j=1 kn(j).

Hence, V ∗
1 k̃n → V ∗

1 k and V ∗
2 k̃n → V ∗

2 k w.r.t. ∥·∥B0 . Clearly, the limit of V ∗
1 k̃n

in B− is still g and the same goes for V ∗
2 k̃n. By the closedness of the embeddings

ι+ and ι− of a quasi Gelfand triple, we conclude that g = V ∗
1 k and f = V ∗

2 k and

a ∈ domA∗ ⇔
[
B1a
B2a

]
∈
{[
V ∗
2 k
V ∗
1 k

] ∣∣∣∣ k ∈ V ∗
1
−1(B− ∩ B0) ∩ V ∗

2
−1(B+ ∩ B0)

}
.

Hence, a ∈ domA∗ is equivalent to there exists a k ∈ V ∗
1
−1(B−∩B0)∩V ∗

2
−1(B+∩

B0) such that
(V ∗

2 )
−1B1a = k and (V ∗

1 )
−1B2a = k,

which is equivalent to

(V ∗
2 )

−1B1a− (V ∗
1 )

−1B2a = 0. ❑



Chapter 5

Boundary Spaces

In this chapter we come back to the port-Hamiltonian PDE and combine the
previous theory to justify well-posedness of the port-Hamiltonian PDE. We
had boundary operators that gave us almost a boundary triple in (3.5). We
will construct suitable boundary spaces to extend those operators such that
we obtain a boundary triple. Hence, we can apply boundary triple theory to
characterize boundary conditions such that the systems has for every initial
condition a unique solution that does not grow in the Hamiltonian. Furthermore,
we will see that our boundary spaces establish a quasi Gelfand triple with a
subspace of L2(∂Ω) as pivot space. Hence, we can also apply Theorem 4.4.6 to
obtain suitable boundary conditions. This enables us to formulate the boundary
conditions in the pivot space.

5.1 Boundary Spaces for L∂

In this section we will construct a suitable boundary space VL (Definition 5.1.6),
such that we can extend the integration by parts formula for L∂ (Lemma 3.1.8).
We will formulate the boundary conditions in this space in Section 5.3. This
space will provide a quasi Gelfand triple with a subspace of L2(∂Ω) as pivot
space. In order to impose different boundary conditions on different parts of
the boundary we introduce boundary operators that only act on a part of the
boundary and their boundary spaces VL,Γ1

.

Definition 5.1.1. We say (Γj)
k
j=1, where Γj ⊆ ∂Ω, is a splitting with thin

boundaries of ∂Ω, if

(i)
⋃k

j=1 Γj = ∂Ω,

(ii) the sets Γj are pairwise disjoint,

(iii) the sets Γj are relatively open in ∂Ω,

(iv) the boundaries of Γj have zero measure w.r.t. the surface measure of ∂Ω.

77
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For Γ ⊆ ∂Ω we will denote by PΓ the orthogonal projection from L2(∂Ω)m1

on L2π(Γ) := ran1ΓLν ⊆ L2(Γ)m1 , where 1M denotes the indicator function for a
set M . We endow L2π(Γ) with the inner product of L2(∂Ω)m1 . Therefore, we can
adapt (3.1) to obtain

⟨L∂f, g⟩L2(Ω)m1 + ⟨f, LH
∂ g⟩L2(Ω)m2 = ⟨Lνγ0f, P∂Ωγ0g︸ ︷︷ ︸

πLg

⟩L2(∂Ω)m1 . (5.1)

We define πΓ
L : H

1(Ω)m1 → L2π(Γ) by π
Γ
L := PΓγ0 and πL := π∂Ω

L . Since both PΓ

and γ0 are continuous, the mapping πΓ
L is also continuous. Therefore, kerπΓ

L is
closed. Note that PΓ = 1ΓP∂Ω and consequently πΓ

L = 1ΓπL, and 1ΓLν = Lν1Γ.

Example 5.1.2. Let L be as in Example 3.1.3 (L∂ = div). Then Lνf = ν ·f and
Lν is certainly surjective. Therefore, L2π(∂Ω) = L2(∂Ω), πL = γ0 and πΓ

L = 1Γγ0.
Since LH

∂ = grad, we have H(LH
∂ ,Ω) = H1(Ω).

Example 5.1.3. Let L be as in Example 3.1.4 (L∂ = rot). Then Lνf = ν × f .
Note that for every w ∈ K3 and every u ∈ R3 with ∥u∥ = 1 we have w =
(u× w)× u+ (u · w) · u. It is not hard to conclude P∂Ωf = (ν × f)× ν. Hence,
πL = (ν × γ0)× ν.

Lemma 5.1.4. Let Γ ⊆ ∂Ω be relatively open and let the boundary of Γ have zero
measure (w.r.t. the surface measure of ∂Ω). Then kerπΓ

L is closed as subspace
of H1(Ω)m1 endowed with the trace topology of ∥·∥H(LH

∂ ,Ω), i.e.

kerπΓ
L

∥·∥
H(LH

∂
,Ω) ∩ H1(Ω)m1 = kerπΓ

L.

Proof. Clearly, kerπΓ
L

∥·∥
H(LH

∂
,Ω) ∩ H1(Ω)m1 ⊇ kerπΓ

L. So we will show the other
inclusion. Note that for Υ ⊆ ∂Ω we have

H1
Υ(Ω)

m2 :=
{
f ∈ H1(Ω)m2

∣∣1Υγ0f = 0 ∈ L2(∂Ω)m2
}
.

Hence, H1
∂Ω\Γ(Ω)

m2 = H1
∂Ω\Γ(Ω)

m2 , since the boundary of Γ has zero measure.

Let (gn)n∈N be a sequence in kerπΓ
L which converges to g ∈ H1(Ω)m1 with respect

to ∥·∥H(LH
∂ ,Ω). By Corollary 3.1.9 we have for an arbitrary f ∈ H1

∂Ω\Γ(Ω)
m2

|⟨Lνγ0f, πΓ
L(g − gn)⟩L2 | = |⟨Lνγ0f, πL(g − gn)⟩L2 | ≤ ∥f∥H(L∂ ,Ω)∥g − gn∥H(LH

∂ ,Ω).

Since πΓ
L(g − gn) = πΓ

Lg and the right-hand-side converges to 0, we can see
that πΓ

Lg ⊥ Lνγ0H
1
∂Ω\Γ(Ω)

m2 . By [57, Th. 13.6.10, Re. 13.6.12] γ0H
1
∂Ω\Γ(Ω)

m2

is dense in L2(Γ)m2 , which implies πΓ
Lg ⊥ ran1ΓLν . By definition πΓ

Lg is also
in ran1ΓLν , which leads to πΓ

Lg = 0. Hence, kerπΓ
L is closed in H1(Ω)m1 with

respect to ∥·∥H(LH
∂ ,Ω). ❑

By the previous lemma

∥ϕ∥MΓ
:= inf

{
∥g∥H(LH

∂ ,Ω)

∣∣∣πΓ
Lg = ϕ

}
is a norm on MΓ := ranπΓ

L. The next lemma will show that this norm is induced
by an inner product.
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Lemma 5.1.5. Let Γ ⊆ ∂Ω be relatively open and let the boundary of Γ have
zero measure (w.r.t. the surface measure of ∂Ω). Then the space (MΓ, ∥·∥MΓ)
is a pre-Hilbert space. Furthermore, its completion denoted by (MΓ, ∥·∥MΓ

) is

isomorphic to the Hilbert space H(LH
∂ ,Ω)

/
kerπΓ

L

H(LH
∂ ,Ω)

.

The mapping πΓ
L : H

1(Ω)m1 → MΓ can be continuously extended to a sur-
jective contraction π̄Γ

L : H(L
H
∂ ,Ω) → MΓ. The kernel of π̄Γ

L satisfies ker π̄Γ
L =

kerπΓ
L

H(LH
∂ ,Ω)

.

Instead of π̄∂Ω
L we will just write π̄L.

Proof. By Lemma 5.1.4 kerπΓ
L is closed in H1(Ω)m1 with respect to trace topol-

ogy of ∥·∥H(LH
∂ ,Ω), which implies that

(
H1(Ω)m1

/
kerπΓ

L
, ∥·∥H(LH

∂ ,Ω)
/

kerπΓ
L

)
is a

normed space (normed space factorized by a closed subspace is again a normed
space). Since ∥∥[g]∼∥∥H(LH

∂ ,Ω)
/

kerπΓ
L

=
∥∥πΓ

Lg
∥∥
MΓ
,

it is straight forward that [g]∼ 7→ πΓ
Lg is an isometry from

(
H1(Ω)m1

/
kerπΓ

L
,

∥·∥H(LH
∂ ,Ω)

/
kerπΓ

L

)
onto (MΓ, ∥·∥MΓ

).

Clearly, (MΓ, ∥·∥MΓ
) has a completion (MΓ, ∥·∥MΓ

). By definition of the

norm ∥·∥MΓ we have for every g ∈ H1(Ω)m1

∥πΓ
Lg∥MΓ

= ∥πΓ
Lg∥MΓ

≤ ∥g∥H(LH
∂ ,Ω).

Therefore, we can extend πΓ
L by continuity on H(LH

∂ ,Ω). This extension is
denoted by π̄Γ

L and is a contraction by the previous equation.
Let g ∈ H(LH

∂ ,Ω). Then by Theorem 3.1.18 there exists a sequence (gn)n∈N
in H1(Ω)m1 , which converges to g. Therefore, we have

∥π̄Γ
Lg∥MΓ

= lim
n→∞

∥πΓ
Lgn∥MΓ

= lim
n→∞

inf
k∈kerπΓ

L

∥gn + k∥H(LH
∂ ,Ω).

The triangular inequality yields

inf
k∈kerπΓ

L

∥g + k∥ − ∥gn − g∥ ≤ inf
k∈kerπΓ

L

∥gn + k∥ ≤ inf
k∈kerπΓ

L

∥g + k∥+ ∥gn − g∥.

Hence, we have

∥π̄Γ
Lg∥MΓ

= inf
k∈kerπΓ

L

∥g + k∥H(LH
∂ ,Ω) = inf

k∈kerπΓ
L

∥g + k∥H(LH
∂ ,Ω) (5.2)

and consequently H(LH
∂ ,Ω)

/
kerπΓ

L
is isomorphic to ran π̄Γ

L. Since the quotient

space H(LH
∂ ,Ω)

/
kerπΓ

L
is a Hilbert space, in particular complete, and MΓ ⊆

ran π̄Γ
L ⊆MΓ, we have MΓ = ran π̄Γ

L. This makes MΓ also a Hilbert space and
MΓ a pre-Hilbert space.

Finally, equation (5.2) implies ker π̄Γ
L = kerπΓ

L. ❑
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Now we are able to define a complete subspace of H(LH
∂ ,Ω) that is in some

sense 0 at one part of the boundary and the corresponding boundary space for
the other part of the boundary.

Definition 5.1.6. Let Γ0,Γ1 ⊆ ∂Ω be a splitting with thin boundaries and π̄L
the extension of πL introduced in Lemma 5.1.5. Then we define

HΓ0
(LH

∂ ,Ω) := ker π̄Γ0

L and VL,Γ1
:= ran π̄L

∣∣
HΓ0

(LH
∂ ,Ω)

,

where we endow HΓ0
(LH

∂ ,Ω) with ∥·∥H(LH
∂ ,Ω) and VL,Γ1

with ∥·∥VL,Γ1
:= ∥·∥M∂Ω

.

Instead of VL,∂Ω = ran π̄L =M∂Ω we just write VL.
From now on until the end of this section we will assume that Γ0,Γ1 ⊆ ∂Ω is

a splitting with thin boundaries. By Lemma 5.1.5 VL is a Hilbert space.
Note that VL,Γ1

and MΓ1
are not necessarily the same space. Although, we

have π̄Γ1

L g = π̄Lg (in L2(∂Ω)m1) for g ∈ H1(Ω)m1 ∩ HΓ0
(LH

∂ ,Ω), but we can only

say ∥π̄Γ1

L g∥MΓ1
≤ ∥π̄Lg∥VL,Γ1

.

Example 5.1.7. Continuing Example 5.1.2 yields HΓ0
(LH

∂ ,Ω) = H1
Γ0
(Ω)m1 =

{f ∈ H1(Ω)m1 |1Γ1γ0f = 0} which already appeared in the proof of Lemma 5.1.4.
Moreover, we have π̄L = γ0, π̄

Γ1

L = 1Γ1γ0, VL = H1/2(∂Ω), and VL,Γ1 = {f ∈
H1/2(∂Ω) | f

∣∣
Γ0

= 0}.

The next example shows that for L from Example 5.1.3 (L∂ = rot) neither
of the “natural” boundary operators πL and Lν can be continuously extended
to H(rot,Ω) (= H(L∂ ,Ω)) such that the codomain is contained in L2(∂Ω). Note
that Lνϕ = ν × ϕ for ϕ ∈ L2(∂Ω) and πLf = (ν × γ0f)× ν for f ∈ H1(Ω).

Example 5.1.8. Let Ω = (0, 1)3 and F : Ω→ R be defined by

F (x) =
1

∥x∥2/52

= (x21 + x22 + x23)
−2/10.

Then we define f = gradF , which is

f(x) =

− 4
10x1(x

2
1 + x22 + x23)

−6/5

− 4
10x2(x

2
1 + x22 + x23)

−6/5

− 4
10x3(x

2
1 + x22 + x23)

−6/5

 .
Hence, rot f = rot gradF = 0. We will show that f is in L2(Ω)3:∫

Ω

∥f(x)∥22 dx =

∫
Ω

3∑
i=1

16

100
x2i (x

2
1 + x22 + x23)

−12/5 dx

=
16

100

∫
Ω

(x21 + x22 + x23)
−7/5 dx

≤
∫
B√

3(0)

(x21 + x22 + x23)
−7/5 dx = 2π

∫ π
2

−π
2

∫ √
3

0

r−
14/5r2 cos θ dr dθ

= 4π

∫ √
3

0

r−
4/5 dr = 4π5r

1/5

∣∣∣∣
√
3

0

< +∞.
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Therefore, f is even in H(rot,Ω). Let ν denote the normal vector on ∂Ω. Then we

show that ν×f
∣∣
∂Ω

is not in L2(∂Ω)3: Note that ν(ζ) =
[

0
0
−1

]
on [0, 1]×[0, 1]×{0}.

Therefore,

ν(ζ)× f(ζ) =

− 4
10ζ2(ζ

2
1 + ζ22 )

−6/5

4
10ζ1(ζ

2
1 + ζ22 )

−6/5

0

 for ζ ∈ [0, 1]× [0, 1]× {0}

and consequently∫
∂Ω

∥ν(ζ)× f(ζ)∥22 dζ ≥
∫
[0,1]×[0,1]×{0}

∥ν(ζ)× f(ζ)∥22 dζ

=
16

100

∫
[0,1]×[0,1]

(ξ21 + ξ22)
−7/5 dξ.

Since [0, 1]× [0, 1] contains the circular sector with arc π
2 and radius 1, we further

have (by applying polar coordinates)

≥ 16

100

π

2

∫ 1

0

r−
14/5r dr =

16

100

π

2

∫ 1

0

r−
9/5 dr

= − 16

100

π

2

5

4
r−

4/5

∣∣∣∣1
0

= +∞.

Hence, f ∈ H(rot,Ω), but ν × f
∣∣
∂Ω

/∈ L2(∂Ω)3. Since

(ν(ζ)× f(ζ))× ν(ζ) =

− 4
10ζ1(ζ

2
1 + ζ22 )

−6/5

− 4
10ζ2(ζ

2
1 + ζ22 )

−6/5

0

 for ζ ∈ [0, 1]× [0, 1]× {0},

we also have
(
ν × f

∣∣
∂Ω

)
× ν /∈ L2(∂Ω)3.

Lemma 5.1.9. The space HΓ0
(LH

∂ ,Ω) equipped with ⟨·, ·⟩H(LH
∂ ,Ω) is a Hilbert

space and H1(Ω)m1 ∩ HΓ0
(LH

∂ ,Ω) is dense in HΓ0
(LH

∂ ,Ω). Moreover, VL,Γ1
is a

closed subspace of VL and therefore also a Hilbert space.

Proof. By definition of HΓ0
(LH

∂ ,Ω) and Lemma 5.1.5 we have

HΓ0(L
H
∂ ,Ω) = ker π̄Γ0

L = kerπΓ0

L = H1(Ω)m1 ∩ HΓ0(L
H
∂ ,Ω).

Note that kerπL ⊆ kerπΓ0

L , since πΓ0

L = 1Γ0
πL. Again by Lemma 5.1.5, we

have
ker π̄L = kerπL ⊆ kerπΓ0

L = ker π̄Γ0

L .

Therefore, π̄Γ0

L ◦ π̄
−1
L : VL →MΓ0

is single-valued (well-defined). For arbitrary
ϕ ∈ VL and g ∈ π̄−1

L ϕ we have

∥π̄Γ0

L ◦ π̄
−1
L ϕ∥MΓ0

= inf
k∈ker π̄

Γ0
L

∥g + k∥H(LH
∂ ,Ω) ≤ inf

k∈ker π̄L

∥g + k∥H(LH
∂ ,Ω) = ∥ϕ∥VL

.
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Hence, π̄Γ0

L ◦ π̄
−1
L is continuous and ker π̄Γ0

L ◦ π̄
−1
L is closed in VL and therefore

also a Hilbert space endowed with ⟨·, ·⟩VL
. The equivalences

ϕ ∈ ker π̄Γ0

L ◦ π̄
−1
L ⇔ π̄−1

L ϕ ⊆ ker π̄Γ0

L ⇔ ϕ ∈ ran π̄L
∣∣
ker π̄

Γ0
L︸ ︷︷ ︸

=VL,Γ1

imply that VL,Γ1 is closed and therefore a Hilbert space. ❑

Proposition 5.1.10. The mapping 1Γ1
Lνγ0 : H

1(Ω)m2 → L2π(Γ1) can be ex-
tended to a linear continuous mapping

L̄Γ1
ν : H(L∂ ,Ω)→ V ′

L,Γ1
,

such that ∥L̄Γ1
ν f∥V′

L,Γ1
≤ ∥f∥H(L∂ ,Ω).

Proof. Let f ∈ H1(Ω)m2 . For g ∈ H1(Ω)m1 ∩ HΓ0
(LH

∂ ,Ω) we have by Corol-
lary 3.1.9∣∣⟨1Γ1Lνγ0f, π̄Lg⟩L2(Γ1)m1

∣∣ = ∣∣⟨Lνγ0f, π̄Lg⟩L2(∂Ω)m1

∣∣ ≤ ∥f∥H(L∂ ,Ω)∥g∥H(LH
∂ ,Ω).

By Lemma 5.1.9 the subspace M := ran π̄L
∣∣
H1(Ω)m1∩HΓ0 (L

H
∂ ,Ω)

⊆ L2π(Γ1)
m1 of

VL,Γ1
is dense in VL,Γ1

. For ϕ ∈ M there exists at least one g ∈ H1(Ω)m1 ∩
HΓ0

(LH
∂ ,Ω) such that πLg = ϕ. Hence, we can rewrite the inequality as∣∣⟨1Γ1

Lνγ0f, ϕ⟩L2(Γ1)m1

∣∣ ≤ ∥f∥H(L∂ ,Ω) inf
g∈H1(Ω)m1∩HΓ0

(LH
∂ ,Ω)

π̄Lg=ϕ

∥g∥H(LH
∂ ,Ω)

= ∥f∥H(L∂ ,Ω)∥ϕ∥VL,Γ1
.

We extend the mapping ϕ 7→ ⟨1Γ1
Lνγ0f, ϕ⟩L2(Γ1)m1 by continuity on VL,Γ1

and
denote this extension by Ξf . Therefore, we have

|Ξf (ϕ)| ≤ ∥f∥H(L∂ ,Ω)∥ϕ∥VL,Γ1
.

This means that the mapping f 7→ Ξf from H1(Ω)m2 to V ′
L,Γ1

is continuous, if

we endow H1(Ω)m2 with ∥·∥H(L∂ ,Ω). Once again, we will extend this mapping by
continuity on H(L∂ ,Ω) and denote it by L̄Γ1

ν . ❑

Instead of writing L̄∂Ω
ν we will just write L̄ν .

Remark 5.1.11. Since VL,Γ1
is a subspace of VL,∂Ω = VL every element of V ′

L

can also be treated as an element of V ′
L,Γ1

. By definition of L̄Γ1
ν and L̄ν it is

easy to see that L̄Γ1
ν f = L̄νf

∣∣
VL,Γ1

or equivalently L̄Γ1
ν f and L̄νf coincide as

elements of V ′
L,Γ1

for f ∈ H(L∂ ,Ω). Hence, we can say V ′
L

∣∣
VL,Γ1

⊆ V ′
L,Γ1

. Since

Hahn-Banach gives the reverse inclusion we can even say V ′
L

∣∣
VL,Γ1

= V ′
L,Γ1

.

The reason for even defining L̄Γ1
ν instead of just using L̄ν is that the range of

its restriction to H1(Ω)m2 is also contained in L2π(Γ1), which will be important
for getting a quasi Gelfand triple.
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Corollary 5.1.12. For f ∈ H(L∂ ,Ω) and g ∈ HΓ0(L
H
∂ ,Ω) we have

⟨L∂f, g⟩L2(Ω)m1 + ⟨f, LH
∂ g⟩L2(Ω)m2 = ⟨L̄νf, π̄Lg⟩V′

L,Γ1
,VL,Γ1

.

For f ∈ H(L∂ ,Ω) and g ∈ H(LH
∂ ,Ω) we have

⟨L∂f, g⟩L2(Ω)m1 + ⟨f, LH
∂ g⟩L2(Ω)m2 = ⟨L̄νf, π̄Lg⟩V′

L,VL

= ⟨π̄LHf, L̄H
ν g⟩VLH ,V′

LH
.

Proof. Since H1(Ω)m2 is dense in H(L∂ ,Ω) and H1(Ω)m1 ∩ HΓ0
(LH

∂ ,Ω) is dense
in HΓ0(L

H
∂ ,Ω), the first equation follows from (5.1) by continuity. The second

equation is just the special case Γ0 = ∅ and switching the roles of L∂ and LH
∂

yields the last equation. ❑

Theorem 5.1.13. The mapping L̄ν : H(L∂ ,Ω)→ V ′
L is linear, bounded and onto.

Proof. By Proposition 5.1.10 we already know that L̄ν is linear and bounded
from H(L∂ ,Ω) to V ′

L.
Let µ ∈ V ′

L be arbitrary. Since π̄L is continuous from H(LH
∂ ,Ω) to VL, the

mapping g 7→ ⟨µ, π̄Lg⟩V′
L,VL

is continuous from H(LH
∂ ,Ω) to C. Consequently,

there exists an h ∈ H(LH
∂ ,Ω) such that

⟨h, g⟩H(LH
∂ ,Ω) = ⟨µ, π̄Lg⟩V′

L,VL
for all g ∈ H(LH

∂ ,Ω).

For a test function v ∈ D(Ω)m1 we have

0 = ⟨µ, π̄Lv⟩V′
L,VL

= ⟨h, v⟩H(LH
∂ ,Ω) = ⟨h, v⟩L2(Ω)m1 + ⟨LH

∂ h, L
H
∂ v⟩L2(Ω)m2

= ⟨h, v⟩D′(Ω)m1 ,D(Ω)m1 +
〈
LH
∂ h, L

H
∂ v
〉
D′(Ω)m2 ,D(Ω)m2

=
〈
(I− L∂LH

∂ )h, v
〉
D′(Ω)m1 ,D(Ω)m1

.

This means L∂L
H
∂ h = h in the sense of distributions. However, h ∈ H(LH

∂ ,Ω)
implies h ∈ L2(Ω), which in turn gives L∂L

H
∂ h ∈ L2(Ω)m1 , and LH

∂ h ∈ L2(Ω)m2 .
Therefore, f := LH

∂ h ∈ H(L∂ ,Ω). By Corollary 5.1.12 for f = LH
∂ h ∈ H(L∂ ,Ω)

and g ∈ H(LH
∂ ,Ω) we have

⟨µ, πLg⟩V′
L,VL

= ⟨h, g⟩H(LH
∂ ,Ω) = ⟨h, g⟩L2(Ω)m1 + ⟨LH

∂ h, L
H
∂ g⟩L2(Ω)m2

= ⟨(I− L∂LH
∂ )h, g⟩L2(Ω)m1 + ⟨L̄νLH

∂ h, π̄Lg⟩V′
L,VL

=
〈
L̄ν (L

H
∂ h)︸ ︷︷ ︸
=f

, π̄Lg
〉
V′

L,VL
.

Hence, L̄νf = µ and L̄ν is onto. ❑

Corollary 5.1.14. The mapping L̄Γ1
ν : H(L∂ ,Ω)→ V ′

L,Γ1
is linear, bounded and

onto.
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Proof. By Proposition 5.1.10 we already know that L̄Γ1
ν is linear and bounded

form H(L∂ ,Ω) to V ′
L. Remark 5.1.11 gives L̄νf

∣∣
VL,Γ1

= L̄Γ1
ν f for f ∈ H(L∂ ,Ω)

and V ′
L,Γ1

= V ′
L

∣∣
VL,Γ1

, which completes the proof. ❑

Theorem 5.1.15. (VL,Γ1 , L
2
π(Γ1),V ′

L,Γ1
) is a quasi Gelfand triple.

Proof. Let D̃+ := ranπL
∣∣
H1

Γ0
(Ω)m1

equipped with ∥·∥X+ = ∥·∥VL,Γ1
and let

D− denote the corresponding set from Definition 4.1.2 with X0 = L2π(Γ1).
Then by Remark 4.1.3 ∥g∥X− = ∥g∥V′

L,Γ1
for g ∈ D− and ran1Γ1

Lνγ0 ⊆ D−

(by Proposition 5.1.10). By definition ran1Γ1
Lνγ0 is dense in L2π(Γ1) and by

Proposition 5.1.10 and Corollary 5.1.14 also dense in V ′
L,Γ1

. Consequently, also

D− is dense in both L2π(Γ1) and V ′
L,Γ1

. Hence, assertion (iv) of Proposition 4.1.8

is satisfied, and by Remark 4.2.9 the completions of D̃+ and D− form a quasi
Gelfand triple with pivot space L2π(Γ1). By construction the completion of D̃+

is VL,Γ1 . By the density of D− in V ′
L,Γ1

and ∥g∥X− = ∥g∥V′
L,Γ1

for g ∈ D− the

completion of D− is V ′
L,Γ1

. ❑

Corollary 5.1.16. H0(L
H
∂ ,Ω) = H∂Ω(L

H
∂ ,Ω) = ker π̄L = ker L̄H

ν and H0(L∂ ,Ω) =
H∂Ω(L∂ ,Ω) = ker π̄LH = ker L̄ν .

Proof. For g ∈ H0(L
H
∂ ,Ω) there is a sequence (gn)n∈N in D(Ω) converging to

g, which implies π̄Lg = limn→∞ π̄Lgn = 0. Therefore, H0(L
H
∂ ,Ω) ⊆ ker π̄L =

H∂Ω(L
H
∂ ,Ω). On the other hand, if g ∈ H∂Ω(L

H
∂ ,Ω), then

⟨L∂f, g⟩L2(Ω)m1 + ⟨f, LH
∂ g⟩L2(Ω)m2 = ⟨L̄νf, π̄Lg⟩V′

L,VL
= 0

for all f ∈ H(L∂ ,Ω). Hence, by Lemma 3.1.17 g ∈ H0(L
H
∂ ,Ω). Consequently,

H0(L
H
∂ ,Ω) = H∂Ω(L

H
∂ ,Ω). The second equality of the statement holds by defini-

tion and the third will be proven by the following equivalences

g ∈ kerπL ⇔ ⟨π̄Lg, ψ⟩V′
L,VL

= 0 for all ψ ∈ V ′
L

⇔ ⟨π̄Lg, L̄νf⟩V′
L,VL

= 0 for all f ∈ H(L∂ ,Ω)

C.5.1.12⇔ ⟨L̄H
ν g, π̄LHf⟩V′

LH ,VLH
= 0 for all f ∈ H(L∂ ,Ω)

⇔ ⟨L̄H
ν g, ϕ⟩V′

LH ,VLH
= 0 for all ϕ ∈ VLH

⇔ g ∈ ker L̄H
ν .

Switching L with LH yields H0(L∂ ,Ω) = H∂Ω(L∂ ,Ω) = ker π̄LH = ker L̄ν . ❑

5.2 Abstract Approach

This section we extract the essence of the previous and present an abstract
approach to boundary spaces with differential operators of arbitrary order in
mind.
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A1

−A∗
2

A2

−A∗
1

H1

domA∗
2

domA1

D2

H2

domA∗
1

domA2

D1

Figure 5.1: Setting of Section 5.2

Let H1,H2 be Hilbert spaces, A1 : domA1 ⊆ H1 → H2 and A2 : domA2 ⊆
H2 → H1 be a densely defined and closed operators, such that A1 ⊆ −A∗

2.
Moreover, let D1, D2 be dense subspaces of H2 and H1, respectively, such that
Di is also dense in domA∗

i for i ∈ {1, 2} with respect to the graph norm.
Furthermore, let X0 be another Hilbert space and B1 : D1 → X0, B2 : D2 → X0

are linear with dense range.
In this section we will show the following theorem

Theorem 5.2.1. Let A1, A2, B1 and B2 fulfill the previous assumptions and
an abstract integration by parts formula:

⟨A∗
1f, g⟩H1 + ⟨f,A∗

2g⟩H2
= ⟨B1f,B2g⟩X0

(5.3)

for f ∈ D1 and g ∈ D2. Then we can construct a boundary triple (X , B̂1, B̂2)

for
[

0 A∗
1

A∗
2 0

]
such that (X ,X0,X ′) is a quasi Gelfand triple.

Clearly, the previous setting with A1 = L∂ , A2 = LH
∂ , B1 = Lν and B2 = πL

is an example of this setting.

Lemma 5.2.2. For f ∈ D1 and g ∈ D2 we have

|⟨B1f,B2g⟩X0
| ≤ ∥f∥A∗

1
∥g∥A∗

2
.

Proof. By (5.3), the triangular inequality and Cauchy-Schwarz’s inequality we
have ∣∣⟨B1f,B2g⟩X0

∣∣ = ∣∣⟨A∗
1f, g⟩H1 + ⟨f,A∗

2g⟩H2

∣∣
≤ ∥A∗

1f∥H1∥g∥H1 + ∥f∥H2∥A∗
2g∥H2

≤
√
∥A∗

1f∥2H1
+ ∥f∥2H2

√
∥g∥2H1

+ ∥A∗
2g∥2H2

= ∥f∥A∗
1
∥g∥A∗

2
. ❑
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Lemma 5.2.3. kerB2 is closed in D2 with respect to ∥·∥A∗
2
.

Proof. Let (gn)n∈N be a sequence in kerB2 that converges to g ∈ D2 with respect
to ∥·∥A∗

2
. Then for every f ∈ D1

|⟨B1f,B2g⟩X0 | = |⟨B1f,B2(g − gn)⟩X0 | ≤ ∥f∥A∗
1
∥g − gn∥A∗

2
→ 0

Since ranB1 is dense in X0, we have B2g ⊥ X0 and consequently g ∈ kerB2. ❑

Therefore, ranB2 equipped with

∥ϕ∥ranB2
:= inf

{
∥g∥A∗

2

∣∣B2g = ϕ
}

(5.4)

is a normed space. Its completion is a Hilbert space as the next lemma will
show.

Lemma 5.2.4. the completion of ranB2 with respect to the norm (5.4) is

isometric isomorphic to domA∗
2

/
kerB2

∥·∥A∗
2 equipped with the factor norm

∥[f ]∼∥ := inf{∥g∥A∗
2
| g ∼ f}.

Proof. By Lemma 5.2.3 that kerB2 is closed inD2 w.r.t. ∥·∥A∗
2
. Hence,D2

/
kerB2

is a normed space. Moreover, we have

∥[g]∼∥D2/kerB2

:= inf
k∈kerB2

∥g + k∥A∗
2
= ∥B2g∥ranB2

and therefore it is straight forward that [g]∼ 7→ B2g is an isometry from
D2
/
kerB2

onto ranB2.

Consequently every completion of D2
/
kerB2

is also a completion of ranB2

with ∥·∥ranB2 . It is not hard to see that domA∗
2

/
kerB2

∥·∥A∗
2 is a completion of

D2
/
kerB2

. ❑

We will denote the completion of ranB2 w.r.t. ∥·∥ranB2
by X . We have

that B2 as a mapping from D2 equipped with ∥·∥A∗
2
onto ranB2 equipped with

∥·∥ranB2 is a contraction (∥B2∥ ≤ 1).

Lemma 5.2.5. We can continuously extend the mapping B2 to a surjective
mapping B̄2 : domA∗

2 → X , where domA∗
2 is equipped with the graph norm.

Moreover, ∥B̄2∥ ≤ 1 and ker B̄2 = kerB2
∥·∥A∗

2 .

Proof. Since domB2 = D2 is dense in domA∗
2 (w.r.t. ∥·∥A∗

2
), the continuous

extension of B1 is defined on domA∗
2 and still satisfies ∥B̄2∥ ≤ 1. Clearly,

kerB2
∥·∥A∗

2 ⊆ ker B̄2 and on the other hand for g ∈ ker B̄2 there exists a sequence
(gn)n∈N in D2 that converges to g (w.r.t. ∥·∥A∗

2
) such that limn→∞B2gn = 0.

By the triangular inequality we have

inf
k∈kerB2

∥g + k∥A∗
2
− ∥gn − g∥A∗

2

≤ inf
k∈kerB2

∥gn + k∥A∗
2

≤ inf
k∈kerB2

∥g + k∥A∗
2
+ ∥gn − g∥A∗

2
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Hence,

0 = ∥B̄2g∥X = lim
n∈N
∥B2gn∥ranB2

= lim
n∈N

inf
k∈kerB2

∥gn + k∥A∗
2
= inf

k∈kerB2

∥g + k∥A∗
2

which implies that g ∈ kerB2
∥·∥A∗

2 . ❑

Lemma 5.2.6. The mapping B1 : D1 → X0 can be extended to a mapping
B̄1 : domA∗

1 → X ′, such that for every f ∈ D1

B̄1f(ϕ) = ⟨B1f, ϕ⟩X0
for all ϕ ∈ ranB2

Proof. For a fixed f ∈ D1 and ϕ ∈ ranB2 we have |⟨B1f, ϕ⟩X0
| ≤ ∥f∥A∗

1
∥ϕ∥X

by Lemma 5.2.2. Hence, we can extend the mapping

Ξf : ϕ ∈ D2 7→ ⟨B1f, ϕ⟩X0

by continuity on X . So Ξf ∈ X ′ and f 7→ Ξf is linear and bounded by ∥·∥A∗
1
.

Therefore, we can also extend this mapping on domA∗
1, we will denote this

extension by B̄1. ❑

Lemma 5.2.7. For f ∈ domA∗
1 and g ∈ domA∗

2 we have

⟨A∗
1f, g⟩H1

+ ⟨f,A∗
2g⟩H2

= ⟨B̄1f, B̄2g⟩X ′,X .

Proof. By assumption Di is dense in domA∗
i w.r.t. the graph norm of A∗

i .
Moreover, B̄i are continuous extensions of Bi (w.r.t. the graph norm of A∗

i ).
Hence, the assertion follows by continuity from (5.3). ❑

Clearly this also implies A1 = −A∗
2

∣∣
ker B̄2

and consequently domA1 =

ker B̄2 = kerB2
∥·∥A∗

2

Theorem 5.2.8. B̄1 is surjective.

Proof. Let µ ∈ X ′ be arbitrary. Then ϕ : g ∈ domA∗
2 7→ ⟨µ, B̄2g⟩X ′,X is an

element in (domA∗
2)

′ and therefore there exists an h ∈ domA∗
2 such that

⟨µ, B̄2g⟩X ′,X = ⟨h, g⟩A2
. For g ∈ domA1 = ker B̄2 we have

0 = ⟨µ, B̄2g⟩X ′,hs = ⟨h, g⟩A∗
2
= ⟨h, g⟩H1

+ ⟨A∗
2h,A

∗
2g⟩H2

= ⟨h, g⟩H1
− ⟨A∗

2h,A1g⟩H2
,

which implies that A∗
2h ∈ domA∗

1 and h = A∗
1A

∗
2h. Hence, we have for a

g ∈ domA∗
2

⟨µ, B̄2g⟩X ′,X = ⟨h, g⟩H1
+ ⟨A∗

2h,A
∗
2g⟩H2

= ⟨h, g⟩H1
− ⟨A∗

1A
∗
2h, g⟩H1

+ ⟨B̄1A
∗
2h, B̄2g⟩X ′,X

= ⟨h−A∗
1A

∗
2h︸ ︷︷ ︸

=0

, g⟩H1
+ ⟨B̄1A

∗
2h, B̄2g⟩X ′,X .

Consequently, µ = B̄1A
∗
2h and B̄1 is surjective. ❑
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Proof of Theorem 5.2.1. We define D̃+ = ranB1 which is by assumption dense
in X0. Moreover, ranB2 is also dense in X0 and since its extension B̄2 maps
into X ′, we conclude that ranB2 ⊆ D− (where D− is the corresponding set to
D̃+ given by Definition 4.1.2). By construction of B̄2, ranB2 is also dense in
X ′. Hence, assertion (iv) of Proposition 4.1.8 is satisfied and by Remark 4.2.9
(X ,X0,X ′) is a quasi Gelfand triple. ❑

5.3 Boundary Triple for a port-Hamiltonian Sys-
tem

In this section we will show that there is a boundary triple associated to the
port-Hamiltonian differential operator (P∂ +P0)H, which enables us to formulate
boundary conditions that admit existence and uniqueness of solutions. In
particular, we can parameterize all boundary conditions that provide unique
solutions that are non-increasing in the Hamiltonian.

Recall the setting in Section 3.2. We had the following PDE:

∂

∂t
x(t, ζ) =

n∑
i=1

∂

∂ζi
PiH(ζ)x(t, ζ) + P0H(ζ)x(t, ζ), t ∈ R+, ζ ∈ Ω,

x(0, ζ) = x0(ζ), ζ ∈ Ω,

where we assume that Pi =
[

0 Li

LH
i 0

]
for i ∈ {1, . . . , n}, see Assumption 3.2.2.

We wrote this system as an abstract Cauchy problem:

ẋ(t) = (P∂ + P0)Hx(t), x(0) = x0,

so that we can use semigroup theory to characterize solvability and uniqueness
of solutions.

In (3.5) we have already found an almost boundary triple for P∂ + P0 (note
that P0 is skew-adjoint, therefore ⟨P0x, y⟩+ ⟨x, P0y⟩ = 0). We had

⟨(P∂ + P0)x, y⟩+ ⟨x, (P∂ + P0)y⟩ = ⟨Lνγ0xL, γ0yLH⟩+ ⟨γ0xLH , Lνγ0yL⟩.

We will see that we can extend this to a boundary triple such that the boundary
spaces establish a quasi Gelfand triple with L2(∂Ω) as pivot space.

Lemma 5.3.1. Let P and L be as in Assumption 3.2.2. Then

VP = VL × VLH and V ′
P = V ′

L × V ′
LH .

Moreover,

π̄P =

[
π̄L 0
0 π̄LH

]
and P̄ν =

[
0 L̄ν
L̄H
ν 0

]
.

Proof. Note that πP is defined as the orthogonal projection on ranPν . Since

Pν =
[

0 Lν

LH
ν 0

]
, we can easily derive πP =

[
πL 0
0 π

LH

]
. By definition VP is the
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completion of ranπP with respect to the range norm. We will denote the
completion of a normed space S by S̃. Thus,

VP = r̃anπP = ˜ranπL × ranπLH = r̃anπL × ˜ranπLH = VL × VLH .

Clearly, this implies V ′
P = V ′

L×V ′
LH and π̄P as the continuous extension of πP =[

πL 0
0 π

LH

]
equals

[
π̄L 0
0 π̄

LH

]
. Finally, the continuous extension P̄ν of Pν =

[
0 Lν

LH
ν 0

]
equals

[
0 L̄ν

L̄H
ν 0

]
. ❑

Recall the splitting x = [
x
LH
xL

]. Accordingly, we introduce Hx =
[
(Hx)

LH

(Hx)L

]
for

x ∈ H−1(H(P∂ ,Ω)), so that

P∂Hx =

[
L∂(Hx)L
LH
∂ (Hx)LH

]
,
[
0 L̄ν

]
Hx = L̄ν(Hx)L,

[
π̄L 0

]
Hx = π̄L(Hx)LH .

The next theorem gives us a boundary triple for the port-Hamiltonian
differential operator, such that the boundary spaces establish a quasi Gelfand
space with L2(∂Ω) as pivot space. Recall that XH is L2(Ω)m equipped with

⟨x, y⟩XH = ⟨x,Hy⟩L2(Ω).

Theorem 5.3.2. The operator

A0 := −(P∂ + P0)H, domA0 := H−1(ker P̄ν)

is closed, skew-symmetric, and densely defined on XH. Its adjoint is

A∗
0 = (P∂ + P0)H, domA∗

0 = H−1(H(P∂ ,Ω)).

Let B1 =
[
π̄L 0

]
H, B2 =

[
0 L̄ν

]
H. Then (VL, B1, B2) is a boundary triple

for A∗
0.

Proof. We define Ã as (P∂ + P0)H with dom Ã = H−1(H(P∂ ,Ω)) on XH. By
Lemma 3.1.5 P∂ : H(P∂ ,Ω) ⊆ L2(Ω)m → L2(Ω)m is a closed operator. Since H is
a bounded operator on L2(Ω)m, and XH and L2(Ω)m have equivalent norms, it
is easy to see that Ã : H−1(H(P∂ ,Ω)) ⊆ XH → XH is closed. The adjoint of Ã
can be calculated by

Ã∗ =
(
(P∂ +P0)H

)∗XH×XH = H−1
(
(P∂ +P0)H

)∗L2×L2H = (P
∗L2×L2

∂ +P
∗L2×L2

0 )H

and according to Remark 3.1.7 we have P
∗L2×L2

∂ = −P∂
∣∣
domP

∗
L2×L2

∂

, where

domP
∗L2×L2

∂ ⊆ H(P∂ ,Ω). Hence,

Ã∗ = −(P∂ + P0)H
∣∣
H−1(domP

∗
L2×L2

∂ )
= −Ã

∣∣
H−1(domP

∗
L2×L2

∂ )
⊆ −Ã.

Since Ã is closed, we have Ã∗∗ = Ã. Consequently, Ã∗ is skew-symmetric on
XH.
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Now we know that Ã is the adjoint of a skew-symmetric operator. So we can
talk about boundary triples for Ã. First we note that

ran
[
B1

B2

]
= ran π̄L × ran L̄ν = VL × V ′

L.

Since H is self-adjoint and P0 is skew-adjoint, we have for x, y ∈ dom Ã

⟨Ãx, y⟩XH + ⟨x, Ãy⟩XH

= ⟨P∂Hx,Hy⟩L2 + ⟨Hx, P∂Hy⟩L2

by the the identity P∂ =
[

0 L∂

LH
∂ 0

]
and Corollary 5.1.12 we further have

=

〈[
L∂(Hx)L
LH
∂ (Hx)LH

]
,

[
(Hy)LH

(Hy)L

]〉
L2

+

〈[
(Hx)LH

(Hx)L

]
,

[
L∂(Hy)L
LH
∂ (Hy)LH

]〉
L2

= ⟨L∂(Hx)L, (Hy)LH⟩L2 +
〈
(Hx)L, LH

∂ (Hy)LH

〉
L2

+
〈
LH
∂ (Hx)LH , (Hy)L

〉
L2 +

〈
(Hx)LH , LH

∂ (Hy)L
〉
L2

= ⟨L̄ν(Hx)L, π̄L(Hy)LH⟩V′
L,VL

+ ⟨π̄L(Hx)LH , L̄ν(Hy)L⟩VL,V′
L

= ⟨B2x,B1y⟩V′
L,VL

+ ⟨B1x,B2y⟩VL,V′
L
.

Therefore, (VL, B1, B2) is a boundary triple for Ã.
By Lemma 2.4.5 dom Ã∗ = kerB1 ∩ kerB2, which is equal to

kerB1 ∩ kerB2 = H−1
(
ker
[
π̄L 0

]
∩ ker

[
0 L̄ν

] )
= H−1

(
ker π̄L × ker L̄ν

)
.

By Corollary 5.1.16 this is equal to H−1(ker L̄H
ν × ker L̄ν) = H−1(ker P̄ν). Hence,

Ã∗ = A0 and A∗
0 = Ã. ❑

Theorem 5.3.3. Let A∗
0 be the operator from the previous theorem. Then

(VL,Γ1
,
[
π̄L 0

]
H,
[
0 L̄Γ1

ν

]
H) is a boundary triple for

A := A∗
0

∣∣
H−1

(
HΓ0

(LH
∂ ,Ω)×H(L∂ ,Ω)

).
Proof. Since we already have a boundary triple for A∗

0, we can show that A is
the adjoint of a skew-symmetric operator by Corollary 2.4.11 (iii). Hence, we
have to check, whether [ 0 I

I 0 ] C⊥ ⊆ C in VL × V ′
L, where C is the corresponding

relation to the domain of A according to Corollary 2.4.11. For B1, B2 being the
mappings from the previous theorem we have (Note that VL,Γ1

is a subspace of
VL; Lemma 5.1.9)

C =
[
B1

B2

]
domA = VL,Γ1

× V ′
L[

0 I
I 0

]
C⊥ = {0} × V⊥

L,Γ1
⊆ VL,Γ1 × V ′

L = C.
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For x, y ∈ domA we have, using Remark 5.1.11,

⟨B1x,B2y⟩VL,V′
L
=
〈
π̄L(Hx)LH , L̄ν(Hy)L

〉
VL,V′

L

=
〈
π̄L(Hx)LH , L̄Γ1

ν (Hy)L
〉
VL,Γ1

,V′
L,Γ1

=
〈[
π̄L 0

]
Hx,

[
0 L̄Γ1

ν

]
Hy
〉
VL,Γ1

,V′
L,Γ1

,

which yields item (ii) in Definition 2.4.1. By ran
[
π̄L 0

0 L̄Γ1
ν

] ∣∣∣
HΓ0

(LH
∂ ,Ω)×H(L∂ ,Ω)

=

VL,Γ1
× V ′

L,Γ1
, the remaining item (i) is fulfilled. ❑

With the next theorem from [28, Theorem 2.5] we can characterize boundary
conditions such that an operator A that possesses a boundary triple generates a
contraction semigroup.

Theorem 5.3.4. Let A0 be a skew-symmetric operator on a Hilbert space X
and (B, B1, B2) be a boundary triple for A∗

0. Furthermore let K be a Hilbert
space, WB =

[
W1 W2

]
, where W1,W2 ∈ Lb(B,K), and A := A∗

0

∣∣
domA

, where

domA = kerWB

[
B1

B2

]
. If ranW1 − W2 ⊆ ranW1 + W2 then the following

assertions are equivalent.

(i) The operator A generates a contraction semigroup on X.

(ii) The operator A is dissipative.

(iii) The operator W1 +W2 is injective and the following operator inequality
holds

W1W
∗
2 +W2W

∗
1 ≥ 0.

We will reformulate this theorem to fit our situation.

Corollary 5.3.5. Let K be some Hilbert space and W =
[
W1 W2

]
: VL,Γ1

×
VL,Γ1

→ K a bounded linear mapping such that ranW1 −W2 ⊆ ranW1 +W2.
Let

D :=
{
x ∈ H−1(HΓ0(L

H
∂ ,Ω)× H(L∂ ,Ω))∣∣W1

[
π̄L 0

]
Hx+W2Ψ

[
0 L̄Γ1

ν

]
Hx = 0

}
,

where Ψ: V ′
L,Γ1

→ VL,Γ1
is the duality mapping corresponding to the quasi

Gelfand triple. Then the following assertions are equivalent.

(i) (P∂ + P0)H
∣∣
D

generates a contraction semigroup.

(ii) (P∂ + P0)H
∣∣
D

is dissipative.

(iii) The operator W1 +W2 is injective and the following operator inequality
holds

W1W
∗
2 +W2W

∗
1 ≥ 0.
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Note that by Theorem 5.3.3 the port-Hamiltonian differential operator P∂H
has the boundary triple (VL,Γ1 , [ π̄L 0 ]H, [ 0 L̄Γ1

ν ]H). Additionally, (VL,Γ1 , L
2
π(Γ1),

V ′
L,Γ1

) is a quasi Gelfand triple. The previous results characterize dissipative
boundary conditions (and therefore existence and uniqueness of solutions) in
terms of the boundary spaces VL,Γ1

, which posses a slightly unhandy inner
product/norm. This makes it sometimes impracticable to check the conditions
of the previous results. Fortunately, in Theorem 4.4.6 we have already shown
that we can formulate the boundary conditions also in terms of the pivot space
of the quasi Gelfand triple, thus in L2π(Γ1). Moreover, in Example 4.4.8 we have
given concrete boundary operators that fulfill all conditions of Theorem 4.4.6.

Theorem 5.3.6. Let M be a linear positive operator on L2π(Γ1). Then A =
(P∂ + P0)H with domain

domA = {x ∈ H−1(HΓ0
(LH

∂ ,Ω)× H(L∂ ,Ω)) | π̄L(Hx)LH +ML̄ν(Hx)L = 0}

generates a contraction semigroup. Its adjoint is given by −(P∂ +P0)H restricted
to

domA∗ = {x ∈ H−1(HΓ0
(LH

∂ ,Ω)× H(L∂ ,Ω)) | π̄L(Hx)LH −ML̄ν(Hx)L = 0}.

Note that π̄L(Hx)LH +ML̄ν(Hx)L = 0 and π̄L(Hx)LH −ML̄ν(Hx)L = 0
implicitly imply that each summand is in the pivot space L2π(Γ1) (Theorem 4.3.5).

Proof. We want to apply Theorem 4.4.6. Hence, we need a boundary triple,
which dual pair comes from a quasi Gelfand triple. By Theorem 5.3.3

(VL,Γ1
,
[
π̄L 0

]
,
[
0 L̄Γ1

ν

]
)

is a boundary triple for (P∂ + P0)H with domain H−1(HΓ0(L
H
∂ ,Ω)× H(L∂ ,Ω)).

Moreover, (VL,Γ1
, L2(Γ1),V ′

L,Γ1
) is a quasi Gelfand triple. In Example 4.4.8 we

checked that the boundary operators V1 = I and V2 =M satisfy the conditions of
Theorem 4.4.6. Hence, by Theorem 4.4.6 the operator A generates a contraction
semigroup.

By Lemma 4.4.9 the adjoint of A is given by −(P∂ + P0)H restricted to{
x ∈ H−1(HΓ1

(LH
∂ ,Ω)× H(L∂ ,Ω))

∣∣M−1π̄L(Hx)LH − L̄ν(Hx)L = 0
}
.

Applying the operator M on the boundary condition yields the claim. ❑

Corollary 5.3.7. The port-Hamiltonian system with boundary condition

π̄L(Hx)LH +M(Hx)L = 0

possesses a unique mild solution for every initial condition in L2(Ω)m.

Proof. This is just an easy consequence of Theorem 5.3.6. ❑
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5.4 Conclusion

For the port-Hamiltonian operator (P∂ + P0)H, there exists a boundary triple
(VL, [ π̄L 0 ], [ 0 L̄ν ]) such that (VL, L2π(∂Ω),V ′

L) is a quasi Gelfand triple. Hence,
we can characterize every boundary conditions such that (P∂ + P0)H generates
a contraction semigroup in terms of the boundary space VL. However, we
can also characterize boundary conditions in the pivot space L2π(∂Ω) such that
(P∂ + P0)H generates a contraction semigroup by Theorem 4.4.6. In any case we
have existence and uniqueness of solutions. Moreover, the Hamiltonian along
solutions is non-increasing. This can be seen by

H(x(t)) =
1

2
∥x(t)∥2XH

=
1

2
∥T (t− s)x(s)∥2XH

≤ 1

2
∥x(s)∥2XH

= H(x(s)), s ≤ t,

as T (the semigroup generated by (P∂ + P0)H) is a contraction semigroup.

Instead of using a semigroup approach to show existence and uniqueness of
solutions we could have used the tools of [37], which provide a more general
approach. The crucial property is that P∂H (with adequate boundary conditions)
is a maximal dissipative operator.
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Chapter 6

Boundary Control and
Observation Systems

We will recall the notion of boundary control systems, scattering passive and
impedance passive in the manner of [35]. We will show that a port-Hamiltonian
system can be described as such a system. This concept already provides solution
theory (see i.e. [34, Lemma 2.6]). It is well known that every scattering passive
boundary control system induces a scattering passive well-posed linear system.

Finally, we will show that port-Hamiltonian systems, with the input and
output function that were indicated at the beginning, can be described as such
boundary control and observation systems, either scattering passive or impedance
passive.

6.1 Basics

Definition 6.1.1. A colligation Ξ :=
([

G
L
K

]
;
[ U
X
Y

])
consists of the three Hilbert

spaces U , X , and Y, and the three linear maps G, L, and K, with the same
domain Z ⊆ X and with values in U , X , and Y, respectively.

Definition 6.1.2. A colligation Ξ :=
([

G
L
K

]
;
[ U
X
Y

])
is an (internally well-posed)

boundary control and observation system, if

(i) the operator
[
G
L
K

]
is closed from X to

[ U
X
Y

]
,

(ii) the operator G is surjective, and

(iii) the operator A := L
∣∣
kerG

generates a contraction semigroup on X .

We will sometimes use boundary control system as an abbreviation for bound-
ary control and observation system

In literature you will also find the term boundary node for what we have
defined as boundary control and observation system.

95
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ẋ = Lx
u y

Figure 6.1: Boundary control and observation system

We think of the operators in this definition as determining a system via

u(t) = Gx(t),

ẋ(t) = Lx(t), x(0) = x0,

y(t) = Kx(t).

(6.1)

Figure 6.1 illustrates this system. We call U the input space, X the state space,
Y the output space and Z the solution space. Normally, the input space U and
the output space Y are boundary spaces.

Definition 6.1.3. Let Ξ =
([

G
L
K

]
;
[ U
X
Y

])
be a colligation. If Ξ is a boundary

control and observation system such that

2Re⟨Lx, x⟩X + ∥Kx∥2Y ≤ ∥Gx∥2U for x ∈ Z, (6.2)

then it is scattering passive and it is scattering energy preserving, if we have
equality in (6.2).

We say Ξ is impedance passive (energy preserving), if Y = U ′, Ψ: U ′ → U is

the unitary identification mapping and Ξ̃ :=

([ 1√
2
(G+ΨK)

L
1√
2
(G−ΨK)

]
;

[
U
X
U

])
is scattering

passive (energy preserving).

Note that an impedance passive (energy preserving) colligation Ξ does not
need to be a boundary control and observation system. If U = Y, then Ψ is the
identity mapping.

We defined impedance passive (energy preserving) for a colligation not directly,
but by its external Cayley transform. This prevents difficulties with boundary
control and observation systems as already remarked. Normally we would ask
for

Re⟨Lx, x⟩X ≤ Re⟨Gx,Kx⟩U,Y ,

where (U ,Y) is a complete dual pair. This would also allow U and Y to be
Banach spaces.
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6.2 Port-Hamiltonian System as Boundary Con-
trol and Observation System

Corresponding to a port-Hamiltonian system we want to introduce the following
operators

Gp := S+

[
π̄L 0

]
H : H−1(H(P∂ ,Ω)) ⊆ XH → SVL,

Lp := (P∂ + P0)H : H−1(H(P∂ ,Ω)) ⊆ XH → XH,

Kp := (S∗)−1
−
[
0 L̄ν

]
H : H−1(H(P∂ ,Ω)) ⊆ XH → (SVL)′,

where S ∈ Lb(L
2(∂Ω)m1) is boundedly invertible, and S+ and (S∗)−1

− denote their
extension on VL and V ′

L respectively (see Corollary 4.4.2). By Lemma 4.4.5 also
Gp and Kp establish a boundary triple for Lp restricted to HΓ0

(LH
∂ ,Ω)×H(L∂ ,Ω)

and (S+VL,Γ1 , SL
2
π(Γ1), (S+VL,Γ1)

′) is a quasi Gelfand triple For simplification
S can be imagined to be the identity mapping. We still have Γ0,Γ1 as a splitting
with thin boundaries of ∂Ω.

Definition 6.2.1. We say the colligation

Ξ =



G
[
Gp

Kp

]
Lp

K
[
Gp

Kp

]
 ;

 UXH
Y




is a port-Hamiltonian boundary control and observation system, where G and K
are linear mappings from S+VL× (S+VL)′ to Hilbert spaces U and Y , repectively.

In particular we will regard

G[ x1
x2

] = x1 and K[ x1
x2

] = x2,

and

G[ x1
x2

] =
1√
2
(x1 + x2) and K[ x1

x2
] =

1√
2
(x1 − x2),

where in the second case we have to specify the solution space such that x1 + x2
and x1 − x2 is defined.

Corollary 6.2.2. The colligation Ξ =

([
Gp

Lp

Kp

]
;

[
S+VL,Γ1

XH
(S+VL,Γ1

)′

])
with solution

space
Z = H−1

(
HΓ0(L

H
∂ ,Ω)× H(L∂ ,Ω)

)
is a boundary control and observation system. Moreover, it is impedance energy
preserving.

Proof. Since Lp is closed on XH with domain Z, and Gp and Kp are continuous

with the graph norm of Lp, we have
[
Gp Lp Kp

]T
is closed. By construction Gp

with domain Z maps onto S+VL,Γ0
. Since Gp is one operator of a boundary
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triple for Lp, the restriction Lp

∣∣
kerGp

is skew-adjoint and therefore a generator

of a contraction semigroup.

We denote U = S+VL,Γ1
and Y = U ′ = (S+VL,Γ1

)′ and we write Ψ for the
duality map between U and Y. Note that (U , Gp,Kp) is a quasi Gelfand triple
for Lp. Therefore,

2Re⟨Lpx, x⟩XH = 2Re⟨Gpx,Kpx⟩VL,V′
L
= 2Re⟨Gpx,ΨKpx⟩VL

=
1

2

(
⟨Gpx,Gpx⟩U + 2Re⟨Gpx,ΨKpx⟩U + ⟨ΨKpx,ΨKpx⟩U

)
− 1

2

(
⟨Gpx,Gpx⟩U − 2Re⟨Gpx,ΨKpx⟩U + ⟨ΨKpx,ΨKpx⟩U

)
=
∥∥ 1√

2
(Gp +ΨKp)x

∥∥2
U −

∥∥ 1√
2
(Gp −ΨKp)x

∥∥2
U ,

which makes Ξ̃ =

([ 1√
2
(Gp+ΨKp)

Lp
1√
2
(Gp−ΨKp)

]
a scattering energy preserving colligation.

Thus, Ξ is impedance energy preserving ❑

Proposition 6.2.3. Let R ∈ Lb(SL
2
π(Γ1)) be coercive. Then the colligation

Ξ =

([ 1√
2
(Gp+RKp)

Lp
1√
2
(Gp−RKp)

]
;

[
U
XH
Y

])
with U = Y = SL2π(Γ1) endowed with ∥f∥U =

∥f∥Y = ∥R−1/2f∥L2 and solution space

Z = {x ∈ H−1(HΓ0
(LH

∂ ,Ω)× H(L∂ ,Ω)) |Gpx,Kpx ∈ SL2π(Γ1)}.

is a scattering energy preserving boundary control and observation system

Proof. Let (xn, [Gpxn Lpxn Kpxn]
T)n∈N be a sequence in [Gp Lp Kp]

T

(restricted to Z) that converges to (x, [f y g]T) ∈ XH × U × XH × U . Since
Lp with domain H(P∂ ,Ω) is a closed operator and HΓ0

(LH
∂ ,Ω) × H(L∂ ,Ω) is

closed in H(P∂ ,Ω), we conclude that x ∈ H−1(HΓ0
(LH

∂ ,Ω) × H(L∂ ,Ω)) and
y = Lpx. Hence, Gpxn converges in S+VL,Γ1

to Gpx and in SL2π(Γ1) to f .
Since (S+VL,Γ1

, SL2π(Γ1), (S+VL,Γ1
)′) is a quasi Gelfand triple, we have Gpx = f .

Analogously, we conclude Kpx = g. Therefore, x ∈ Z and [Gp Lp Kp]
T

is closed, which implies that also
[ 1√

2
(Gp +RKp) Lp

1√
2
(Gp −RKp)

]T
is

closed.

By Example 4.4.8 and Theorem 4.4.6 Lp

∣∣
ker 1√

2
(Gp+RKp)

generates a contrac-

tion semigroup.

The surjectivity of
[ Gp

Kp

]
and Example 4.4.8 gives the surjectivity of 1√

2
(Gp +

RKp).
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Since (VL, Gp,Kp) is a boundary triple for Lp, we have

2Re⟨Lpx, x⟩XH

= 2Re⟨Gpx,Kpx⟩VL,V′
L
= 2Re⟨Gpx,Kpx⟩L2

π(Γ1)

=
1

2

(
⟨R−1Gpx,Gpx⟩L2 + 2Re⟨Gpx,Kpx⟩L2 + ⟨RKpx,Kpx⟩L2

)
− 1

2

(
⟨R−1Gpx,Gpx⟩L2 − 2Re⟨Gpx,Kpx⟩L2 + ⟨RKpx,Kpx⟩L2

)
=
∥∥ 1√

2
(Gp +RKp)x

∥∥2
U −

∥∥ 1√
2
(Gp −RKp)x

∥∥2
Y ,

which makes Ξ scattering energy preserving. ❑

Remark 6.2.4. Clearly, the previous proposition holds also true for the oper-

ator triple
[ 1√

2
(RKp +Gp) Lp

1√
2
(RKp −Gp)

]T
and for Gp and Kp being

swapped. Moreover, replacing Lp by Lp + J , where J ∈ Lb(XH) is dissipative,
yields a scattering passive system.

Hence, the port-Hamiltonian system with input u and output y described by
the equations

√
2u(t, ζ) = πL

(
H(ζ)x(t, ζ)

)
LH +RLν

(
H(ζ)x(t, ζ)

)
L
, t ∈ R+, ζ ∈ Γ1,

∂

∂t
x(t, ζ) =

n∑
i=1

∂

∂ζi
Pi

(
H(ζ)x(t, ζ)

)
+ P0

(
H(ζ)x(t, ζ)

)
, t ∈ R+, ζ ∈ Ω,

√
2y(t, ζ) = πL

(
H(ζ)x(t, ζ)

)
LH −RLν

(
H(ζ)x(t, ζ)

)
L
, t ∈ R+, ζ ∈ Γ1,

0 = πL
(
H(ζ)x(t, ζ)

)
LH , t ∈ R+, ζ ∈ Γ0,

x(0, ζ) = x0(ζ), ζ ∈ Ω,

(6.3)

is scattering passive and in particular well-posed, as the following corollary will
clarify. The mappings πL and Lν are used a little bit sloppy. There is always a
pointwise a.e. description for these mappings, but due to compact notation we
use πL and Lν .

Corollary 6.2.5. The system (6.4) can be interpreted as the scattering energy
preserving boundary control and observation system([

1√
2
(Gp+RKp)

Lp
1√
2
(Gp−RKp)

]
;

[
U
XH

Y

])
,

with the assumptions of Proposition 6.2.3 and S = I. Replacing Lp with Lp + J
for a dissipative J ∈ Lb(XH) yields a scattering passive boundary control and
observation system.

Corollary 6.2.6. With the setting of Proposition 6.2.3 the colligation([ Gp

Lp

Kp

]
;
[ SL2

π(Γ1)
XH

SL2
π(Γ1)

])
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with solution space

Z = {x ∈ H−1(HΓ0(L
H
∂ ,Ω)× H(L∂ ,Ω)) |Gpx,Kpx ∈ SL2π(Γ1)}

is impedance energy preserving.

Proof. This is a direct consequence of Proposition 6.2.3 for R = I. ❑

Note that the colligations in Corollary 6.2.2 and Corollary 6.2.6 are the same
but the solution spaces are slightly different. The colligation in Corollary 6.2.6
is in general not necessarily a boundary control and observation system.

Hence, the port-Hamiltonian system with input u and output y described by
the equations

u(t, ζ) = RLν
(
H(ζ)x(t, ζ)

)
L
, t ∈ R+, ζ ∈ Γ1,

∂

∂t
x(t, ζ) =

n∑
i=1

∂

∂ζi
Pi

(
H(ζ)x(t, ζ)

)
+ P0

(
H(ζ)x(t, ζ)

)
, t ∈ R+, ζ ∈ Ω,

y(t, ζ) = πL
(
H(ζ)x(t, ζ)

)
LH , t ∈ R+, ζ ∈ Γ1,

0 = πL
(
H(ζ)x(t, ζ)

)
LH , t ∈ R+, ζ ∈ Γ0,

x(0, ζ) = x0(ζ), ζ ∈ Ω,

(6.4)

is impedance energy preserving.

6.3 Wave Equation

This section can be seen as a continuation of Section 3.3. For convenience we
recap the assumptions. Let Ω ⊆ Rn be as in Assumption 3.1.1 and Γ0, Γ1 is a
splitting with thin boundary of ∂Ω (Definition 5.1.1). Let ρ ∈ L∞(Ω) be the
mass density and T ∈ L∞(Ω)n×n be the Young modulus, such that 1

ρ ∈ L∞(Ω),

T (ζ)H = T (ζ) and T (ζ) ≥ δI for a δ > 0 and almost every ζ ∈ Ω.
In Section 3.3 we have already seen, that we can rewrite the wave equation

as a port-Hamiltonian system. The wave equation

∂2

∂t2
w(t, ξ) =

1

ρ(ξ)
div
(
T (ξ) gradw(t, ξ)

)
,

can be formulated as a port-Hamiltonian system by choosing the state variable

x(t, ζ) =
[
x1(t,ζ)
x2(t,ζ)

]
=
[

ρ ∂
∂tw(t,ζ)

gradw(t,ζ)

]
. Then the PDE looks like

ẋ =

[
0 div

grad 0

]
︸ ︷︷ ︸

=P∂

[ 1
ρ 0

0 T

]
︸ ︷︷ ︸

=H

x.

This is exactly the port-Hamiltonian system we get from choosing L as in
Example 3.1.3. From Example 5.1.2 and Example 5.1.7 we know that the
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boundary operators are γ0 and the extension L̄ν of Lνγ0 = ν · γ0. We will denote
the normal trace L̄ν by γν . Therefore,

√
2u(t, ζ) = ν(ζ) ·

(
T (ζ) gradw(t, ζ)

)
+
∂

∂t
w(t, ζ), t ∈ R+, ζ ∈ Γ1,

∂2

∂t2
w(t, ξ) =

1

ρ(ξ)
div
(
T (ξ) gradw(t, ξ)

)
, t ∈ R+, ζ ∈ Ω,

√
2y(t, ζ) = ν(ζ) ·

(
T (ζ) gradw(t, ζ)

)
− ∂

∂t
w(t, ζ), t ∈ R+, ζ ∈ Γ1,

0 =
∂

∂t
w(t, ζ), t ∈ R+, ζ ∈ Γ0,

w(0, ζ) = w0(ζ), ζ ∈ Ω,

∂

∂t
w(0, ζ) = w1(ζ), ζ ∈ Ω,

can be modeled by a scattering passive and well-posed boundary control system,
by Corollary 6.2.5. In the port-Hamiltonian formulation this system is described
by

u(t) =
1√
2

(
γνTx2(t) + γ0

1
ρx1(t)

)
, t ∈ R+,

ẋ(t) =

[
0 div

grad 0

]
Hx(t), t ∈ R+,

y(t) =
1√
2

(
γνTx2(t) + γ0

1
ρx1(t)

)
, t ∈ R+,

x(0) = x0,

where we choose the solution space as

Z = {x ∈ H−1(H1
Γ0
(Ω)× H(div,Ω)) | γ0x1, γνTx2 ∈ L2(Γ1)}. (6.5)

Moreover, with different input and output operators we have by Corol-
lary 6.2.6 the impedance passive boundary control system

u(t, ζ) = ν(ζ) ·
(
T (ζ) gradw(t, ζ)

)
, t ∈ R+, ζ ∈ Γ1,

∂2

∂t2
w(t, ξ) =

1

ρ(ξ)
div
(
T (ξ) gradw(t, ξ)

)
, t ∈ R+, ζ ∈ Ω,

y(t, ζ) =
∂

∂t
w(t, ζ), t ∈ R+, ζ ∈ Γ1,

0 =
∂

∂t
w(t, ζ), t ∈ R+, ζ ∈ Γ0.
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Again in the port-Hamiltonian formulation this system is described by

u(t) = γνTx2(t), t ∈ R+,

ẋ(t) =

[
0 div

grad 0

]
Hx(t), t ∈ R+,

y(t) = γ0
1
ρx1(t), t ∈ R+,

x(0) = x0

with solution space either (6.5) or

Z = H−1(H1
Γ0
(Ω)× H(div,Ω))

depending of whether we use Corollary 6.2.6 or Corollary 6.2.2. Thus there
are two ways of describing the wave equation as impedance port-Hamiltonian
boundary control and observation system.

In any case (scattering energy preserving or impedance energy preserving)[
0 div

grad 0

]
H with boundary condition γ0

1
ρx1 + γνTx2 = 0, γνTx2 or γ0

1
ρx1

generates a contraction semigroup.

6.4 Maxwell’s Equations

This section is continuation of Section 3.4. However, we will recall the most
important things. Let Ω ⊆ R3 be as in Assumption 3.1.1 and L = (Li)

3
i=1 be

as in Example 3.1.4. In this example we have already showed L∂ = rot and
Lνf = ν × f . The corresponding differential operator for the port-Hamiltonian
PDE is

P∂ =

[
0 L∂
LH
∂ 0

]
=

[
0 rot
− rot 0

]
.

We write the state as x = [DB ], where D,B ∈ K3. We also want to introduce the
positive scalar functions ϵ, µ, g and r such that

ϵ,
1

ϵ
, µ,

1

µ
, g ∈ L∞(Ω) and r,

1

r
∈ L∞(Γ1).

Furthermore, we define the Hamiltonian density by H(ζ) :=
[

1
ϵ(ζ)

0

0 1
µ(ζ)

]
, where

each block is a 3× 3 matrix. At last we define [ EH ] := H [DB ], so that we have
the same notation as in [64].

The projection on ranLν is given by g 7→ (ν × g) × ν, therefore π̄L is the
extension of g 7→ (ν × γ0g)× ν to H(LH

∂ ,Ω). The mapping πτ from [64] can be
compared with π̄L but is not exactly the same, since they have different domains
and codomains. We have πτ : H

1(Ω)3 → Vτ ⊆ L2(∂Ω)3 and π̄L : H(rot,Ω)→ VL
is its extension, if we change the norms in the domain and codomain of πτ .
However, VL cannot be embedded into L2(∂Ω)3.

For this particular L we denote L̄ν by γτ× and π̄L by γτ .
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Note that by Example 5.1.8 neither γτ nor γΓ1
τ× map even into L2π(Γ1), therefore

it is really necessary to use a quasi Gelfand triple instead of an “ordinary” Gelfand
triple.

The corresponding boundary control system is a model for Maxwell’s equa-
tions in the following form
√
2u(t, ζ) = r(ζ)ν(ζ)×H(t, ζ) + (ν(ζ)×E(t, ζ))× ν(ζ), t ∈ R+, ζ ∈ Γ1,

∂

∂t
D(t, ζ) = rotH(t, ζ)− g(ζ)E(t, ζ), t ∈ R+, ζ ∈ Ω,

∂

∂t
B(t, ζ) = − rotE(t, ζ), t ∈ R+, ζ ∈ Ω,

√
2y(t, ζ) = r(ζ)ν(ζ)×H(t, ζ)− (ν(ζ)×E(t, ζ))× ν(ζ), t ∈ R+, ζ ∈ Γ1,

0 = (ν(ζ)×E(t, ζ))× ν(ζ), t ∈ R+, ζ ∈ Γ0,

D(0, ζ) = D0(ζ) ζ ∈ Ω,

B(0, ζ) = B0(ζ) ζ ∈ Ω,

and is scattering passive by Corollary 6.2.5, where we set J =
[−g 0

0 0

]
H.

Note that, following the trick in [64, Proposition 6.1], Gauß’s law divD = ρ
is satisfied by simply defining ρ by this formula and Gauß’s law for magnetism
divB = 0 is automatically satisfied, if the initial condition satisfies it. This
can be seen, if we apply div on both sides of ∂

∂tµH = − rotE and noting that
divµH = divB is constant in time (div rot = 0). This has to be understood
in the sense of distributions. However, for classical solutions this can also
be understood in the classical sense. We will explain this in more detail in
Section 8.5.3, where we separate the static solutions from the dynamic solutions.

In the port-Hamiltonian formulation this system looks like

u(t) = 1√
2

(
rγτ×

1
ϵB+ γτ

1
µD
)
,

d

dt

[
D(t)
B(t)

]
=

[
0 rot
− rot 0

] [ 1
ϵ 0
0 1

µ

] [
D(t)
B(t)

]
+

[
−g 0
0 0

] [
D(t)
B(t)

]
,

y(t) = 1√
2

(
rγτ×

1
ϵB− γτ

1
µD
)
,[

D(0)
B(0)

]
=

[
D0

B0

]
,

with solution space

Z =

{[
D(t)
B(t)

]
∈ ϵHΓ0

(rot,Ω)× µH(rot,Ω)
∣∣∣∣ γτ× 1

ϵB, γτ
1
µD ∈ L2(Γ1)

}
.

6.5 Mindlin Plate Model

This section is a continuation of Section 3.5. Nevertheless, we will recall the
setting. Let Ω ⊆ R2 be as in Assumption 3.1.1. Let us consider the differential



104 CHAPTER 6. BOUNDARY CONTROL & OBSERVATION SYSTEMS

operator P∂ and the skew-symmetric matrix P0 given by

P∂ :=



0 0 0 0 0 0 ∂1 ∂2
0 0 0 ∂1 0 ∂2 0 0
0 0 0 0 ∂2 ∂1 0 0
0 ∂1 0 0 0 0 0 0
0 0 ∂2 0 0 0 0 0
0 ∂2 ∂1 0 0 0 0 0
∂1 0 0 0 0 0 0 0
∂2 0 0 0 0 0 0 0


, P0 :=



0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0


.

It is easy to derive the corresponding P = (Pi)
2
i=1 and L = (Li)

2
i=1. We define a

Hamiltonian density by

H =



1
ρh 0 0 0 0 0 0 0

0 12
ρh3 0 0 0 0 0 0

0 0 12
ρh3 0 0 0 0 0

0 0 0

Db

0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0 Ds0 0 0 0 0 0


,

where ρ, h are strictly positive functions, Db(ζ) is a coercive 3× 3 matrix and
Ds(ζ) is a coercive 2× 2 matrix, such that all conditions on H in Definition 3.2.1
are satisfied. We have written (in Section 3.5) the state variable x as

α :=
[
ρhv ρh3

12w1 ρh3

12w2 κ1,1 κ2,2 κ1,2 γ1,3 γ2,3

]T
and defined

e := Hα =
[
v w1 w2 M1,1 M2,2 M1,2 Q1 Q2

]T
.

Thus, we can write the port-Hamiltonian PDE

∂

∂t
x = (P∂ + P0)Hx as

∂

∂t
α = (P∂ + P0)e.

The corresponding boundary operator is

Lνf =

 0 0 0 ν1 ν2
ν1 0 ν2 0 0
0 ν2 ν1 0 0



f1
f2
f3
f4
f5

 =


ν ·
[
f4
f5

]
ν ·
[
f1
f3

]
ν ·
[
f3
f2

]
 .

Since ∥ν(ζ)∥ = 1, at least ν1(ζ) ̸= 0 or ν2(ζ) ̸= 0. This can be used to show that
ranLν = L2(∂Ω)3. Therefore, π̄L is the extension of the boundary trace operator
γ0 to H(LH

∂ ,Ω).
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Since there is no direct physical meaning to the boundary variables

[
0 Lν

]
e =


ν ·
[
Q1

Q2

]
ν ·
[
M1,1

M1,2

]
ν ·
[
M1,2

M2,2

]
 and

[
πL 0

]
e =

 vw1

w2

 ,

we define η :=
[−ν2

ν1

]
and apply the unitary transformation S =

[
1 0 0
0 ν1 ν2
0 −ν2 ν1

]
to

obtain

 Qν

Mν,ν

Mν,η

 := S


ν ·
[
Q1

Q2

]
ν ·
[
M1,1

M1,2

]
ν ·
[
M1,2

M2,2

]
 and

 v
wν

wη

 := (S∗)−1︸ ︷︷ ︸
=S

 vw1

w2

 ,

which have a physical interpretation; see [8]. Hence, by Corollary 6.2.6 the
system

u =
[
Qν Mν,ν Mν,η

]T
, on R+ × Γ1,

∂

∂t
α = (P∂ + P0)e, on R+ × Ω,

y =
[
v wν wη

]T
, on R+ × Γ1,

0 =
[
v wν wη

]T
, on R+ × Γ0,

for the Mindlin plate is impedance energy preserving, which is exactly the system
in [8].
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Chapter 7

Stabilization of the Wave
Equation

We investigate the stability of the wave equation with spatial dependent coef-
ficients on a bounded and connected multidimensional domain. The system is
stabilized via a scattering passive feedback law. We show that the system is
semi-uniformly stable, which is a stability concept between exponential stability
and strong stability. Hence, this also implies strong stability of the system. In
particular, classical solutions are uniformly stable. This will be achieved by
showing that the spectrum of the port-Hamiltonian operator is contained in the
left half plane C− and the port-Hamiltonian operator generates a contraction
semigroup. Moreover, we show that the spectrum consists of eigenvalues only
and the port-Hamiltonian operator has a compact resolvent.

This chapter is the result of joint work with Birgit Jacob [24].

7.1 Introduction

Recall the setting of the wave equation in Section 3.3. We had the Young’s
elasticity modulus T : Ω → Cn×n, which is a Lipschitz continuous matrix-
valued function such that T (ζ) is a positive and invertible matrix (a.e.) and
T, T−1 ∈ L∞(Ω)n×n. Moreover, we had the Lipschitz continuous mass density
ρ : Ω→ R+, that satisfies ρ, ρ

−1 ∈ L∞(Ω). In this chapter we investigate stability

107
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of following boundary control system

u(t, ζ) =
∂w

∂Tν
(t, ζ), t ≥ 0, ζ ∈ Γ1,

∂2w

∂t2
(t, ζ) =

1

ρ(ζ)
div (T (ζ) gradw(t, ζ)) , t ≥ 0, ζ ∈ Ω,

w(t, ζ) = h(ζ), t ≥ 0, ζ ∈ Γ0,

w(0, ζ) = w0(ζ), ζ ∈ Ω,

∂w

∂t
(0, ζ) = w1(ζ), ζ ∈ Ω,

y(t, ζ) =
∂w

∂t
(t, ζ), t ≥ 0, ζ ∈ Γ1,

(7.1a)

with feedback law

u(t, ζ) = −k(ζ)y(t, ζ), t ≥ 0, ζ ∈ Γ1, (7.1b)

where u and y are the boundary control and observation, respectively and Ω ⊆ Rn

is a bounded and connected domain with Lipschitz boundary ∂Ω = Γ0 ∪Γ1 with
Γ0∩Γ1 = ∅, Γ0 and Γ1 are open in the relative topology of ∂Ω and the boundaries
of Γ0 and Γ1 have surface measure zero. Note, that Γ0 and Γ1 do not have to be
connected. Furthermore, w(t, ζ) is the deflection at point ζ ∈ Ω and t ≥ 0, and
a profile h is given on Γ0, where the deflection is fixed. The vector ν denotes
the outward normal at the boundary and ∂

∂Tνw(t, ζ) = T (ζ)ν(ζ) · gradw(t, ζ) =
ν(ζ) · T (ζ) gradw(t, ζ) is the conormal derivative. Further, k : Γ1 → R is a
measurable positive and bounded function such that also its pointwise inverse
k−1 = 1

k is bounded. Finally, w0 and w1 are the initial conditions.
Stability of (7.1) has been studied in the literature by several authors, see

e.g. [3, 23, 29, 52]. Strong stability has been investigated in [52]. Further,
exponential stability of the wave equation with constant T and ρ has been shown
in [29] using multiplier methods. For smooth domains, in [3] the equivalence of
exponential stability and the so-called geometric control condition was shown
by methods from micro-local analysis. In [23] this system also appears in port-
Hamiltonian formulation, but with constant T and ρ and C2 boundary. Under
these restrictions it could be shown that this system is even exponential stable.
However, semi-uniform stability, a notion which is stronger than strong stability
and weaker than exponential stability, of the multidimensional wave equation
with spatial dependent functions ρ and T on quite general domains has not been
studied in the literature.

We aim to show semi-uniform stability of the multidimensional wave equa-
tion (7.1) using a port-Hamiltonian formulation. Semi-uniform stability implies
strong stability, and thus we extend the results obtained in [52]. To prove
our main result we use the fact that semi-uniform stability is satisfied if the
port-Hamiltonian operator generates a contraction semigroup and possesses no
spectrum in the closed right half plane.
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We proceed as follows. In Section 7.2 we model the multidimensional wave
equation as a port-Hamiltonian system with a suitable state space. The main
results concerning stability are then obtained in Section 7.3, where we analyze
the spectrum of the differential operator of the port-Hamiltonian formulation.
We will see that finding points in the resolvent set is linked to solvability of
lossy Helmholtz equations. We will show that our operator has a compact
resolvent and its resolvent set contains the imaginary axis. At that point we can
apply existing theory to justify semi-uniform stability. Finally, used notations
and results on Sobolev spaces and G̊ardings inequalities are presented in the
Appendix.

7.2 Port-Hamiltonian Formulation of the System

In order to find a port-Hamiltonian formulation of our system, that is suitable
for our purpose, we split the system (7.1) into a time independent system for
the equilibrium and a dynamical system with homogeneous boundary conditions.
The time static system for the equilibrium is given by

div T (ζ) gradwe(ζ) = 0, ζ ∈ Ω,

we(ζ) = h(ζ), ζ ∈ Γ0,

∂we

∂Tν
(ζ) = 0, ζ ∈ Γ1,

(7.2)

and a dynamical system with homogeneous Dirichlet boundary conditions on Γ0

is given by

∂2wd

∂t2
(t, ζ) =

1

ρ(ζ)
div(T (ζ) gradwd(t, ζ)), t ≥ 0, ζ ∈ Ω,

wd(t, ζ) = 0, t ≥ 0, ζ ∈ Γ0,

wd(0, ζ) = w0(ζ)− we(ζ), ζ ∈ Ω,

∂wd

∂t
(0, ζ) = w1(ζ), ζ ∈ Ω,

∂wd

∂Tν
(t, ζ) = −k∂wd

∂t
(t, ζ), t ≥ 0, ζ ∈ Γ1.

(7.3)

The original system is solved by w(t, ζ) = we(ζ)+wd(t, ζ). As in Section 3.3 (and
in [28]) the system in (7.3) can be described in a port-Hamiltonian manner by

choosing the state x(t, ζ) =
[
ρ(ζ) ∂

∂twd(t,ζ)

gradwd(t,ζ)

]
. By using the convention x(t) := x(t, ·)
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we can write the system (7.3) as

d

dt
x(t) =

[
0 div

grad 0

] [ 1
ρ 0

0 T

]
x(t),

x(0) =

[
ρw1

grad(w0 − we)

]
,

γ0
1
ρx1(t)

∣∣
Γ0

= 0,

γνTx2(t)
∣∣
Γ1

= −kγ0 1
ρx1(t)

∣∣
Γ1
,

where γ0 is the boundary trace and γν is the normal trace (the extension of
f 7→ ν · γ0f). In Section 3.3 we chose the state space L2(Ω)n+1 equipped with
the energy inner product

⟨x, y⟩ :=
〈
x,
[

1
ρ 0

0 T

]
y
〉
L2(Ω)n+1

,

which is equivalent to the standard inner product of L2(Ω)n+1 thanks to the
assumptions on T and ρ. For well-posedness this is a suitable state space, but
when it comes to stability this state space is too large as it does not reflect the
fact that the second component of the state variable x2 is of the form grad v,
for some function v in the Sobolev space H1

Γ0
(Ω). Thus, we choose the state

space XH as L2(Ω)× gradH1
Γ0
(Ω), instead of L2(Ω)n+1. Note that gradH1

Γ0
(Ω)

is closed in L2(Ω)n by Poincaré’s inequality. Hence, XH is also a Hilbert space
with the L2-inner product. Nevertheless, we also use the energy inner product
on XH, that is

⟨x, y⟩XH :=
〈
x,
[

1
ρ 0

0 T

]
y
〉
L2(Ω)n+1

.

Furthermore, we define

A :=

[
0 div

grad 0

] [ 1
ρ 0

0 T

]
with dom(A) :=

[
1
ρ 0

0 T

]−1(
H1

Γ0
(Ω)× H(div,Ω)

)
as densely defined operator on L2(Ω)n+1. Where H(div,Ω) is given by Defini-
tion 3.1.2 and Example 3.1.3. Note that we have already packed the boundary
condition γ0

1
ρx1 = 0 on Γ0 into the domain of A. Moreover, by construction

ranA = XH. Taking the state space and the remaining boundary condition
(feedback) into account gives

A := A
∣∣
dom(A)

,

where dom(A) :=
{
x ∈ dom(A)

∣∣∣ γνTx2∣∣Γ1
= −kγ0 1

ρx1
∣∣
Γ1

}
∩ XH

(7.4)

as an operator on XH. Note that ranA ⊆ ranA = XH. Therefore the operator
A indeed maps into XH.
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The corresponding operator on L2(Ω)n+1 would be

A0 := A
∣∣
dom(A0)

,

where dom(A0) :=
{
x ∈ dom(A)

∣∣∣ γνTx2∣∣Γ1
= −kγ0 1

ρx1
∣∣
Γ1

}
.

(7.5)

By Section 6.3, A0 generates a contraction semigroup on L2(Ω)n+1 endowed

with ⟨x, y⟩ :=
〈
x,
[

1
ρ 0

0 T

]
y
〉
L2
. Note that this operator allows elements in its

domain which do not respect that the second component is a gradient field. This
can lead to solutions that are not related to the original problem anymore, as
by construction of the state x(t, ζ) the second component is gradwd(t, ζ) and
therefore a gradient field. Lemma 7.3.15 shows that this is problematic for
stability.

We do not need to rebuild the semigroup theory in [28] for the “new” state
space XH. We will see that A inherits most of the properties of A0 as A = A0

∣∣
XH

.

Lemma 7.2.1. Let (T (t))t≥0 be a strongly continuous semigroup on a Hilbert

space X and Ã its generator. Then every subspace V ⊇ ran Ã is invariant under
(T (t))t≥0.

Moreover, Ã
∣∣
V

generates the strongly continuous semigroup

(TV (t))t≥0 := (T (t)
∣∣
V
)t≥0,

if V is additionally closed.

Proof. Let t ≥ 0 and x ∈ V . Then it is well-known that

Ã

∫ t

0

T (s)xds︸ ︷︷ ︸
∈ran Ã⊆V

= T (t)x− x︸︷︷︸
∈V

.

Hence, T (t)x ∈ V , because the left-hand-side is in ran Ã ⊆ V and V is a subspace.
The remaining assertion follows from [15, ch. II sec. 2.3]. ❑

Remark 7.2.2. If the strongly continuous semigroup (T (t))t≥0 is even a contrac-
tion semigroup, then also (TV (t))t≥0 is a contraction semigroup.

Proposition 7.2.3. The operator A given by (7.4) is a generator of contraction
semigroup.

Proof. By [28], A0 (defined in (7.5)) is a generator of a contraction semigroup
(T0(t))t≥0. Because of ranA0 ⊆ ranA = XH and Lemma 8.5.5 A = A0

∣∣
XH

generates the contraction semigroup (T (t))t≥0 := (T0(t)
∣∣
XH

)t≥0. ❑

The following lemma is the boundary triple property for the port-Hamiltonian
system given by the wave equation.
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Lemma 7.2.4. Let A be given by (7.4) and x, y ∈ dom(A). Then

⟨Ax, y⟩XH + ⟨x,Ay⟩XH = ⟨γνTx2, γ0 1
ρy1⟩L2(Γ1) + ⟨γ0 1

ρx1, γνTy2⟩L2(Γ1).

And in particular

Re⟨Ax, x⟩XH = Re⟨γνTx2, γ0 1
ρx1⟩L2(Γ1).

7.3 Stability Results

In this section we prove semi-uniform stability of the multidimensional wave
equation (7.1). We start with the definition of semi-uniform stability and strong
stability.

Definition 7.3.1. We say a strongly continuous semigroup (T (t))t≥0 on a
Hilbert space X is strongly stable, if for every x ∈ X

lim
t→∞
∥T (t)x∥X = 0.

We say a continuous semigroup (T (t))t≥0 on a Hilbert space X is semi-
uniformly stable, if there exists a continuous monotone decreasing function
f : [0,∞)→ [0,∞) with limt→∞ f(t) = 0 and

∥T (t)x∥X ≤ f(t)∥x∥A

for every x ∈ dom(A).

Remark 7.3.2. Note that in [10, sec. 3] semi-uniform stability is defined by
∥T (t)A−1∥ → 0, where A is the generator of (T (t))t≥0. It can be easily seen
that this is equivalent to our definition.

Moreover, in [10, sec. 3] it is explained that semi-uniform stability is a concept
between exponential stability and strong stability. In particular, semi-uniform
stability implies strong stability.

The already mentioned article [10] is an overview article on semi-uniform
stability. We remark that this notion is sometimes called differently, e.g. in [55]
it is called uniform stability for smooth data (USSD).

In the following we denote by A the operator given by (7.4) which is associated
to the port-Hamiltonian formulation of (7.1).

Our main result is the following theorem.

Theorem 7.3.3. The semigroup generated by A is semi-uniformly stable.

The proof of Theorem 7.3.3 is given at the end of the section.

Remark 7.3.4. For the original system (7.1) strong stability of A translates to:
There is a we ∈ H1(Ω) such that for every initial value w0 ∈ H1(Ω), w1 ∈ L2(Ω)
the corresponding solution w satisfies

lim
t→∞
∥w(t, ·)− we(·)∥H1(Ω) = 0.
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We will make use of a characterization of semi-uniform stability in [10,
Theorem 3.4] to show that A, given by (7.4), generates a semi-uniformly stable
semigroup. As A generates a bounded strongly continuous semigroup, by this
theorem a sufficient condition for semi-uniform stability is given by σ(A)∩ iR = ∅.
Here σ(A) denotes the spectrum of the operator A. Hence, it suggests itself to
analyse the spectrum of A or its complement in C, the resolvent set.

We will show that calculating the resolvent set ρ(A) is related to a lossy
Helmholtz problem: Find a function u : Ω→ C that satisfies

div T gradu− λ2ρu = f in Ω,
∂

∂Tνu+ λku = g on Γ1,
(7.6)

where λ ∈ C \ {0}, f ∈ L2(Ω), g ∈ L2(Γ1), and k, ρ and T are the functions from
the beginning. A weak formulation of this problem can be derived by taking
the inner product with v ∈ H1

Γ0
(Ω), apply an integration by parts formula for

div-grad and taking the boundary conditions into account:

⟨T gradu, grad v⟩L2(Ω) + λ2⟨ρu, v⟩L2(Ω) + λ⟨kγ0u, γ0v⟩L2(Γ1)

= ⟨−f, v⟩L2(Ω) + ⟨g, γ0v⟩L2(Γ1).
(7.7)

We define

b(u, v) := ⟨T gradu, grad v⟩L2(Ω) + λ2⟨ρu, v⟩L2(Ω) + λ⟨kγ0u, γ0v⟩L2(Γ1)

F (v) := ⟨−f, v⟩L2(Ω) + ⟨g, γ0v⟩L2(Γ1),

so that we can write (7.7) as

b(u, v) = F (v). (7.8)

A weak solution of (7.6) is a function u ∈ H1
Γ0
(Ω) that satisfies (7.8) for every

v ∈ H1
Γ0
(Ω).

Lemma 7.3.5. Let u be a weak solution of the Helmholtz problem (7.6). Then
u ∈ H1

Γ0
(Ω), T gradu ∈ H(div,Ω) and in particular,

div T gradu− λ2ρu = f in L2(Ω),

γνT gradu+ λkγ0u = g in L2(Γ1).

Proof. A weak solution u is by definition in H1
Γ0
(Ω) and satisfies b(u, v) = F (v)

for all v ∈ H1
Γ0
(Ω). If we choose v ∈ C∞

c (Ω), then all boundary integrals vanish.
Hence,

⟨T gradu, grad v⟩L2(Ω) = ⟨−f, v⟩L2(Ω) − λ2⟨ρu, v⟩L2(Ω),

which implies that T gradu ∈ H(div,Ω) and div T gradu = f + λ2ρu. Using this
and choosing again v ∈ H1

Γ0
(Ω) in the weak formulation gives

⟨γνTu, γ0v⟩H−1/2(Γ1),H
1/2(Γ1)

+ λ⟨kγ0u, γ0v⟩L2(Γ1) = ⟨g, γ0v⟩L2(Γ1).

Therefore, γνTu has an L2(Γ1) representative and γνTu+ λkγ0u = g. ❑
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Note that for y = [ y1
y2 ] ∈ XH there exists a ϕ ∈ H1

Γ0
(Ω) such that y2 = gradϕ.

This ϕ continuously depends on y2 by Poincaré’s inequality. If Γ0 = ∅, then we

choose ϕ ∈ H1(Ω)/R (ϕ ∈ H1(Ω) and
∫
Ω
ϕ dλ = 0) for uniqueness and continuity.

Lemma 7.3.6. Let A be the operator defined in (7.4). Then λ ∈ ρ(A) \ {0} is
equivalent to: The system

div T gradu− λ2ρu = λy1 + λ2ρϕ in Ω,
∂

∂Tνu+ λku = −λkϕ on Γ1,
(7.9)

is weakly solvable for every y = [ y1
y2 ] ∈ XH, where ϕ is defined by gradϕ = y2 as

described above.

Proof. For λ ∈ ρ(A) \ {0} and y ∈ XH there exists an x ∈ dom(A) such that
(A− λ)x = y. Hence,

div Tx2 − λx1 = y1

grad 1
ρx1 − λx2 = gradϕ ⇒ x2 = 1

λ grad( 1ρx1 − ϕ).

Substituting x2 in the first equation, multiplying by λ and adding λ2ρϕ on both
sides yields

div T grad( 1ρx1 − ϕ)− λ
2ρ( 1ρx1 − ϕ) = λy1 + λ2ρϕ.

Since x ∈ dom(A) we have kγνTx2 + γ0
1
ρx1 = 0 which becomes

γνT grad( 1ρx1 − ϕ) + λkγ0(
1
ρx1 − ϕ) = −λkγ0ϕ.

Hence, u := ( 1ρx1 − ϕ) is a weak solution of the system (7.9). On the other hand

if u is a weak solution of (7.9), then x :=
[

ρ(u+ϕ)
1
λ gradu

]
∈ dom(A) and (A− λ)x = y

by Lemma 7.3.5. ❑

Theorem 7.3.7. For every λ ∈ iR \ {0} the system (7.9) is weakly solvable.

Proof. We set λ = iη, where η ∈ R \ {0}.
Note that by

Re b(u, u) = ∥T 1/2 gradu∥2L2(Ω) − η
2∥ρ1/2u∥2L2(Ω),

b(·, ·) satisfies a G̊arding inequality (see Definition A.1.1).
By G̊arding’s inequality it is sufficient to show that b(·, ·) is a non-degenerated

sesquilinear form, (see e.g. Theorem A.1.2). Suppose there is a u ∈ H1
Γ0
(Ω) such

that b(u, v) = 0 for all v ∈ H1
Γ0
(Ω). Then b(u, u) = 0 and by separating the

imaginary part we have

iη⟨kγ0u, γ0u⟩L2(Γ1) = 0.
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Hence, u ∈ H1
0(Ω). Moreover, u is a weak solution of the corresponding system

to b(u, v) = F̃ (v), where F̃ (v) := 0. By Lemma 7.3.5, div T gradu+ η2ρu = 0 in
L2(Ω) and γνTu = 0 in L2(Γ1). Summed up u satisfies

div T gradu+ η2ρu = 0,

γ0u = 0,

γνTu
∣∣
Γ1

= 0.

By the unique continuation principle (see e.g. [56, Theorem 1.7, Remark 1.8]),
u has to be 0 and consequently b(·, ·) is non-degenerated. ❑

Remark 7.3.8. The system (7.9) is also solvable for λ ∈ C+, but we already knew
from the dissipativity of A that C+ ⊆ ρ(A).

Corollary 7.3.9. iR \ {0} ∪ C+ ⊆ ρ(A).

Proof. This is a direct consequence of Lemma 7.3.6 and Theorem 7.3.7. ❑

Lemma 7.3.10. If λ ∈ iR is an eigenvalue of A, then a corresponding eigenvector
x satisfies γνTx2

∣∣
Γ1

= γ0
1
ρx1
∣∣
Γ1

= 0.

Proof. By Lemma 7.2.4 we have

Re⟨(A− λ)x, x⟩XH = Re⟨Ax, x⟩XH − Reλ⟨x, x⟩XH

= Re⟨γνTx2, γ0 1
ρx1⟩L2(Γ1) − Reλ∥x∥2XH

= −Re⟨kγ0 1
ρx1, γ0

1
ρx1⟩L2(Γ1) − Reλ∥x∥2XH

= −∥k1/2γ0
1
ρx1∥

2
L2(Γ1)

− Reλ∥x∥2XH
.

If x is an eigenvector of λ ∈ iR, then this equation becomes

0 = −∥k1/2γ0
1
ρx1∥

2
L2(Γ1)

,

which implies γ0
1
ρx1
∣∣
Γ1

= 0 and γνTx2
∣∣
Γ1

= 0 by the boundary condition. ❑

Lemma 7.3.11. Let A : dom(A) ⊆ XH → XH be the operator from the beginning.
Then 0 is not an eigenvalue of A.

Proof. Let us assume that 0 is an eigenvalue of A and x be an eigenvector. Then
div Tx2 = 0 and grad 1

ρx1 = 0 and by Lemma 7.3.10 x satisfies γνTx2
∣∣
Γ1

= 0 =

γ0
1
ρx1
∣∣
Γ1
. Hence, for arbitrary f ∈ H1

Γ0
(Ω) we have

0 = ⟨div Tx2, f⟩L2 = −⟨Tx2, grad f⟩L2 ,

which implies x2 ⊥T gradH1
Γ0
(Ω), where ⊥T denotes orthogonality w.r.t. ⟨T ·, ·⟩L2 ,

which is an equivalent inner product on L2(Ω). Since by assumption x2 ∈
gradH1

Γ0
(Ω) we conclude x2 = 0. Finally, x1 = 0 by Poincaré’s inequality.

Therefore, 0 cannot be an eigenvalue. ❑
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Theorem 7.3.12. Let

X := gradH1
Γ0
(Ω) ∩ {f ∈ H(div,Ω) | γνf

∣∣
Γ1
∈ L2(Γ1)}

with ∥f∥X :=
√
∥f∥2L2(Ω)n + ∥div f∥2L2(Ω) + ∥γνf∥

2
L2(Γ1)

.

Then X can be compactly embedded into L2(Ω)n.

Proof. Let (fn)n∈N be a bounded sequence in X, i.e. supn∈N∥fn∥X ≤ K ∈ R.
By assumption there exists a ϕn ∈ H1

Γ0
(Ω) such that fn = gradϕn for every

n ∈ N. By Poincaré’s inequality we have

∥ϕn∥H1(Ω) ≤ C∥gradϕn∥L2(Ω) ≤ C∥fn∥X .

Hence, (ϕn)n∈N is a bounded sequence in H1(Ω). Moreover, (γ0ϕn)n∈N is a
bounded sequence in H1/2(∂Ω). By the compact embedding of H1(Ω) into L2(Ω)
and H1/2(∂Ω) into L2(∂Ω), there exists a subsequence (ϕn(k))k∈N that converges
in L2(Ω) such that also (γ0ϕn(k))k∈N converges in L2(∂Ω). W.l.o.g. we assume
that this is already true for the original sequence. By

∥fn − fm∥2L2(Ω)

= ⟨fn − fm, grad(ϕn − ϕm)⟩L2(Ω)

= −⟨div(fn − fm), ϕn − ϕm⟩L2(Ω)

+ ⟨γν(fn − fm), γ0(ϕn − ϕm)⟩H−1/2(Γ1),H
1/2(Γ1)︸ ︷︷ ︸

⟨γν(fn−fm),γ0(ϕn−ϕm)⟩L2(Γ1)

≤ 2K∥ϕn − ϕm∥L2(Ω) + 2K∥γ0ϕn − γ0ϕm∥L2(Γ1)

→ 0,

we have that (fn)n∈N is a Cauchy sequence in L2(Ω)n and therefore convergent.
❑

Theorem 7.3.13. dom(A) can be compactly embedded into XH.

Proof. Note that dom(A) ⊆ XH and that ∥·∥XH is equivalent to ∥·∥L2(Ω)n+1 . We
regard dom(A) with ⟨x, y⟩A = ⟨x, y⟩XH + ⟨Ax,Ay⟩XH as inner product. Note
that dom(A) is a Hilbert space with the previous inner product. The induced
norm can be written as

∥x∥A =
√
∥x∥2XH

+ ∥T grad 1
ρx1∥

2
L2 + ∥ 1ρ div Tx2∥

2
L2 .

Note that ∥γνTx2∥L2(Γ1) is automatically bounded by C∥x∥A for some C > 0,

since ∥γ0 1
ρx1∥H1/2(∂Ω) is bounded by C∥x∥A for some C > 0 and γνTx2

∣∣
Γ1

=

−kγ0 1
ρx1
∣∣
Γ1
. Let X be the space from Theorem 7.3.12. Then

Φ:

{
dom(A) → H1

Γ0
(Ω)×X,

x 7→
[

1
ρ 0

0 T

]
x,
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is continuous. Moreover, both H1
Γ0
(Ω) and X can be compactly embedded into

L2(Ω) and L2(Ω)n, respectively. We denote this combined compact embeddeding
by ι : H1

Γ0
(Ω)×X → L2(Ω)n+1. Hence, also dom(A) can be compactly embedded

into XH by Φ−1ιΦ. ❑

Corollary 7.3.14. The resolvent operators of A are compact, the spectrum of
A contains only eigenvalues and iR ∪ C+ ⊆ ρ(A).

Proof. By Theorem 7.3.13, dom(A) can be compactly embedded into XH, which
implies that every resolvent operator is compact. Hence, the spectrum of A
contains only eigenvalues. Since 0 is not an eigenvalue by Lemma 7.3.11, we
conclude that 0 ∈ ρ(A). Moreover, by Corollary 7.3.9 also every other point on
iR is in ρ(A). ❑

Finally we will prove Theorem 7.3.3.

Proof of Theorem 7.3.3. By Corollary 7.3.14 we have σ(A) ∩ iR = ∅. Therefore,
as announced in the beginning, [10, Theorem 3.4] implies the semi-uniform
stability of the semigroup generated by A. ❑

We conclude this section with an investigation of the strong stability of the
operator A0 given by (7.5), which is an extension of A and generates a strongly
continuous semigroup on L2(Ω)n+1.

Lemma 7.3.15. Let Ω ⊆ Rn be bounded and open with Lipschitz boundary,
n ≥ 2. Then the operator A0 (defined in (7.5)) has λ = 0 as an eigenvalue and
thus, does not generate a strongly stable semigroup.

Proof. Choose the components of x = [ x1
x2

] as

x1 = 0 and x2 = T−1

 ∂2ϕ
−∂1ϕ

0...
0

,
where ϕ is any non zero C∞

c (Ω) function. Then x2 ̸= 0 and div Tx2 = ∂1∂2ϕ−
∂2∂1ϕ = 0. Since ϕ has compact support, x satisfies the boundary conditions.
Thus A0 cannot generate a strongly stable semigroup, since the eigenvector x to
λ = 0 is a constant solution of the Cauchy problem. ❑

7.4 Conclusion

In this paper we showed semi-uniform stability of the multidimensional wave
equation equipped with a scattering passive feedback law. Further, we proved
that the corresponding port-Hamiltonian operator has a compact resolvent.

To get compact embeddings for the port-Hamiltonian operator of the wave
equation it is necessary to choose an adequate state space. This is a new aspect
that arises for spatial multidimensional port-Hamiltonian systems as in the
one-dimensional spatial setting the compact embedding is always given. It is
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likely that most of the techniques presented in this chapter will translate for
general linear port-Hamiltonian systems on multidimensional spatial domains
like Maxwell’s equations and the Mindlin plate model. Probably the crucial tool
will be a unique continuation principle.

Moreover, there is an interesting link between the resolvent set of the port-
Hamiltonian operator of the wave equation and solvability of lossy Helmholtz
equations. Since in the theory of Helmholtz equations (especially in view of finite
element methods) a uniform bound of the solution operator is of interest, it might
be possible to use results from that theory to give explicit decay rates for the semi-
uniform stability or even obtain exponential stability under certain assumptions.
For constant coefficients we can find such estimates in [38, 39, 17]. There are
some recent works on these estimates with non constant coefficients [19, 20].



Chapter 8

Compact Embedding for
div-rot Systems

We show the following compactness theorem: Any L2-bounded sequence of vector
fields with L2-bounded rotations and L2-bounded divergences as well as L2-
bounded tangential traces on one part of the boundary and L2-bounded normal
traces on the other part of the boundary, contains a strongly L2-convergent
subsequence. This generalises recent results for homogeneous mixed boundary
conditions in [4, 6]. As applications we present a related Friedrichs/Poincaré
type estimate, a div-curl lemma, and show that the Maxwell operator with mixed
tangential and impedance boundary conditions (Robin type boundary conditions)
has compact resolvents.

This chapter is the result of a joint work with Dirk Pauly [46].

8.1 Introduction

Let Ω ⊂ R3 be open with boundary Γ, composed of the boundary parts Γ0
(tangential) and Γ1 (normal). In [4, Theorem 4.7] the following version of Weck’s
selection theorem has been shown. In fact they showed the theorem for weak
Lipschitz boundaries, but we will stick to strong Lipschitz boundaries.

Theorem 8.1.1 (compact embedding for vector fields with homogeneous mixed
boundary conditions). Let Ω be a bounded strong Lipschitz domain and Γ0,Γ1
a splitting with thin boundaries (see Definition 5.1.1). Furthermore, let ε be
admissible. Then

HΓ0(rot,Ω) ∩ ε−1HΓ1(div,Ω)
cpt
↪→ L2(Ω).

Here,
cpt
↪→ denotes a compact embedding, and – in classical terms and in the

smooth case – we have for a vector field E (ν denotes the exterior unit normal

119
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at Γ)

E ∈ HΓ0(rot,Ω) ⇔ E ∈ L2(Ω), rotE ∈ L2(Ω), ν × E|Γ0 = 0,

E ∈ ε−1HΓ1(div,Ω) ⇔ εE ∈ L2(Ω), div εE ∈ L2(Ω), ν · εE|Γ1 = 0.

Note that Theorem 8.1.1 even holds for bounded weak Lipschitz pairs (Ω,Γ0).
For exact definitions and notations see Section 8.2, and for a history of related
compact embedding results see, e.g., [63, 49, 62, 11, 65, 27, 51] and [31]. The
general importance of compact embeddings in a functional analytical setting
(FA-ToolBox) for Hilbert complexes (such as de Rham, elasticity, biharmonic) is
described, e.g., in [42, 44, 45, 43] and [47, 48, 2].

In this chapter, we shall generalise Theorem 8.1.1 to the case of inhomoge-
neous boundary conditions, i.e., we will show that the compact embedding in
Theorem 8.1.1 still holds if the space

HΓ0(rot,Ω) ∩ ε−1HΓ1(div,Ω)

is replaced by
ĤΓ0(rot,Ω) ∩ ε−1ĤΓ1(div,Ω),

where in classical terms and in the smooth case

E ∈ ĤΓ0(rot,Ω) ⇔ E ∈ L2(Ω), rotE ∈ L2(Ω), ν × E|Γ0 ∈ L2(Γ0),

E ∈ ε−1ĤΓ1(div,Ω) ⇔ εE ∈ L2(Ω), div εE ∈ L2(Ω), ν · εE|Γ1 ∈ L2(Γ1).

The main result (compact embedding) is formulated in Theorem 8.4.1. As
applications we show in Theorem 8.5.1 that the compact embedding implies
a related Friedrichs/Poincaré type estimate, showing well-posedness of related
systems of partial differential equations. Moreover, in Theorem 8.5.3 we prove
that Theorem 8.4.1 yields a div-curl lemma. Note that corresponding results for
exterior domains are straight forward using weighted Sobolev spaces, see [40, 41].
Another application is presented in Section 8.5.3 where we show that our compact
embedding result implies compact resolvents of the Maxwell operator with
inhomogeneous mixed boundary conditions, even of impedance type.

8.2 Notations

Throughout this chapter, let Ω ⊂ R3 be an open and bounded strong Lipschitz
domain, and let ε be an admissible tensor (matrix) field, i.e., a symmetric, L∞-
bounded, and uniformly positive definite tensor field ε : Ω→ R3×3. Moreover,
let the boundary Γ of Ω be decomposed into two relatively open and strong
Lipschitz subsets Γ0 and Γ1 := Γ \ Γ0 forming the interface Γ0 ∩ Γ1 for the mixed
boundary conditions. See [4, 5, 6] for exact definitions. We call (Ω,Γ0) a bounded
strong Lipschitz pair.

The usual Lebesgue and Sobolev Hilbert spaces (of scalar or vector valued
fields) are denoted by L2(Ω), H1(Ω), H(rot,Ω), H(div,Ω), and spaces with
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vanishing rot and div are denoted by

HΓ0,0(rot,Ω) := HΓ0(rot,Ω) ∩ ker rot and

HΓ0,0(div,Ω) := HΓ0(div,Ω) ∩ ker div,

respectively. Moreover, we introduce the cohomology space of Dirichlet or
Neumann fields (generalised harmonic fields)

HΓ0,Γ1,ε(Ω) := HΓ0,0(rot,Ω) ∩ ε−1HΓ1,0(div,Ω).

The L2(Ω)-inner product and norm (of scalar or vector valued L2(Ω)-spaces)
will be denoted by ⟨ · , · ⟩L2(Ω) and ∥ · ∥L2(Ω), respectively, and the weighted
Lebesgue space L2ε(Ω) is defined as L2(Ω) (of vector fields) but being equipped
with the weighted L2(Ω)-inner product and norm ⟨ · , · ⟩L2

ε(Ω) := ⟨ε · , · ⟩L2(Ω) and
∥ · ∥L2

ε(Ω), respectively. The norms in, e.g., H1(Ω) and H(rot,Ω) are denoted by
∥ · ∥H1(Ω) and ∥ · ∥H(rot,Ω), respectively. Orthogonality and orthogonal sum in
L2(Ω) and L2ε(Ω) are indicated by ⊥L2(Ω), ⊥L2

ε(Ω), and ⊕L2(Ω), ⊕L2
ε(Ω), respectively.

Finally, we introduce inhomogeneous tangential and normal L2-boundary
conditions in

ĤΓ0(rot,Ω) :=
{
E ∈ H(rot,Ω)

∣∣ γΓ0τ E ∈ L2(Γ0)
}
,

ĤΓ1(div,Ω) :=
{
E ∈ H(div,Ω)

∣∣ γΓ1ν E ∈ L2(Γ1)
}

with norms given by, e.g., ∥E∥2
ĤΓ0

(rot,Ω)
:= ∥E∥2H(rot,Ω) + ∥γ

Γ0
τ E∥2L2(Γ0)

. The

definitions of the latter Hilbert spaces need some explanations:

Definition 8.2.1. (L2-traces)

(i) The tangential trace of a vector field E ∈ H(rot,Ω) is a well-defined
tangential vector field γΓτ E ∈ H−1/2(Γ) generalising the classical tangential

trace γΓτ Ẽ = −ν × ν × Ẽ|Γ for smooth vector fields Ẽ. By the notation
γΓ0τ E ∈ L2(Γ0) we mean, that there exists a tangential vector field EΓ0 ∈
L2(Γ0), such that for all vector fields Φ ∈ H1

Γ1
(Ω) it holds

⟨rotΦ, E⟩L2(Ω) − ⟨Φ, rotE⟩L2(Ω) = ⟨γΓ0τ×Φ, EΓ0⟩L2(Γ0).

Then we set γΓ0τ E := EΓ0 ∈ L2(Γ0). Here and in the following, the twisted
tangential trace of the smooth vector field Φ is given by the tangential
vector field γΓτ×Φ = ν × Φ|Γ ∈ L2(Γ) with γΓ1τ×Φ = γΓτ×Φ|Γ1 = 0 and

γΓ0τ×Φ = γΓτ×Φ|Γ0 ∈ L2(Γ0). Note that γΓ0τ E is well defined as γΓ0τ×H
1
Γ1
(Ω) is

dense in L2t (Γ0) = {w ∈ L2(Γ0) | ν · w = 0}.

(ii) Analogously, the normal trace of a vector field E ∈ H(div,Ω) is a well-
defined function γΓνE ∈ H−1/2(Γ) generalising the classical normal trace

γΓν Ẽ = ν · Ẽ|Γ for smooth vector fields Ẽ. Again, by the notation γΓ1ν E ∈
L2(Γ1) we mean, that for all functions ϕ ∈ H1

Γ0
(Ω) it holds

⟨gradϕ,E⟩L2(Ω) + ⟨ϕ, divE⟩L2(Ω) = ⟨γΓ10 ϕ, γΓ1ν E⟩L2(Γ1).
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Here, the well-known scalar trace of the smooth function ϕ is given by
γΓ0 ϕ = ϕ|Γ ∈ L2(Γ) with γΓ00 ϕ = γΓ0 ϕ|Γ0 = 0 and γΓ10 ϕ = γΓ0 ϕ|Γ1 ∈ L2(Γ1).
Note that γΓ1ν E is well defined as γΓ10 H1

Γ0
(Ω) is dense in L2(Γ1).

Remark 8.2.2. Analogously to Definition 8.2.1 (i) and as

γΓ0τ×Ẽ · γ
Γ0
τ H̃ = (ν × Ẽ) · (−ν × ν × H̃) = (ν × ν × Ẽ) · (ν × H̃) = −γΓ0τ Ẽ · γΓ0τ×H̃

holds on Γ0 for smooth vector fields Ẽ, H̃, we can define the twisted tangential
trace γΓ0τ×E ∈ L2(Γ0) of a vector field E ∈ H(rot,Ω) as well by

⟨rotΦ, E⟩L2(Ω) − ⟨Φ, rotE⟩L2(Ω) = −⟨γΓ0τ Φ, γΓ0τ×E⟩L2(Γ0)

for all vector fields Φ ∈ H1
Γ1
(Ω).

8.3 Preliminaries

In [6, Theorem 5.5], see [5, Theorem 7.4] for more details and compare to [4],
the following theorem about the existence of regular potentials for the rotation
with homogeneous mixed boundary conditions has been shown.

Theorem 8.3.1 (regular potential for rot with homogeneous mixed boundary
conditions).

HΓ1,0(div,Ω) ∩HΓ0,Γ1(Ω)
⊥L2(Ω) = rotHΓ1(rot,Ω) = rotH1

Γ1(Ω)

holds together with a regular potential operator mapping rotHΓ1(rot,Ω) to H1
Γ1
(Ω)

continuously. In particular, the latter ranges are closed subspaces of L2(Ω).

Moreover, we need [6, Theorem 5.2]:

Theorem 8.3.2 (Helmholtz decompositions with homogeneous mixed boundary
conditions). The ranges gradH1

Γ0
(Ω) and rotHΓ1(rot,Ω) are closed subspaces of

L2(Ω), and the L2ε(Ω)-orthogonal Helmholtz decompositions

L2ε(Ω) = gradH1
Γ0(Ω)⊕L2

ε(Ω) ε
−1HΓ1,0(div,Ω)

= HΓ0,0(rot,Ω)⊕L2
ε(Ω) ε

−1 rotHΓ1(rot,Ω)

= gradH1
Γ0(Ω)⊕L2

ε(Ω) HΓ0,Γ1,ε(Ω)⊕L2
ε(Ω) ε

−1 rotHΓ1(rot,Ω)

hold (with continuous potential operators). Moreover, HΓ0,Γ1,ε(Ω) has finite
dimension.

Combining Theorem 8.3.1 and Theorem 8.3.2 shows immediately the follow-
ing.

Corollary 8.3.3 (regular Helmholtz decomposition with homogeneous mixed
boundary conditions). The L2ε(Ω)-orthogonal regular Helmholtz decomposition

L2ε(Ω) = gradH1
Γ0(Ω)⊕L2

ε(Ω) HΓ0,Γ1,ε(Ω)⊕L2
ε(Ω) ε

−1 rotH1
Γ1(Ω)
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holds (with continuous potential operators) and HΓ0,Γ1,ε(Ω) has finite dimen-
sion. More precisely, any E ∈ L2ε(Ω) may be L2ε(Ω)-orthogonally (and regularly)
decomposed into

E = gradugrad + EH + ε−1 rotErot

with ugrad ∈ H1
Γ0
(Ω), Erot ∈ H1

Γ1
(Ω), and EH ∈ HΓ0,Γ1,ε(Ω), and there exists a

constant c > 0, independent of E, ugrad, EH, Erot, such that

∥EH∥L2
ε(Ω) ≤ ∥E∥L2

ε(Ω),

c∥ugrad∥H1
Γ0

(Ω) ≤ ∥gradugrad∥L2
ε(Ω) ≤ ∥E∥L2

ε(Ω),

c∥Erot∥H1
Γ1

(Ω) ≤ ∥ε−1 rotErot∥L2
ε(Ω) ≤ ∥E∥L2

ε(Ω).

8.4 Compact Embeddings

Our main result reads as follows:

Theorem 8.4.1 (compact embedding for vector fields with inhomogeneous
mixed boundary conditions).

ĤΓ0(rot,Ω) ∩ ε−1ĤΓ1(div,Ω)
cpt
↪→ L2(Ω).

Proof. Let (Eℓ) be a bounded sequence in ĤΓ0(rot,Ω) ∩ ε−1ĤΓ1(div,Ω). By the
Helmholtz decomposition in Corollary 8.3.3 we L2ε(Ω)-orthogonally and regularly
decompose

Eℓ = gradugrad,ℓ + EH,ℓ + ε−1 rotErot,ℓ

with ugrad,ℓ ∈ H1
Γ0
(Ω), Erot,ℓ ∈ H1

Γ1
(Ω), and EH,ℓ ∈ HΓ0,Γ1,ε(Ω), and there exists

a constant c > 0 such that independent of E... and for all ℓ

∥ugrad,ℓ∥H1
Γ0

(Ω) + ∥EH,ℓ∥L2
ε(Ω) + ∥Erot,ℓ∥H1

Γ1
(Ω) ≤ c∥Eℓ∥L2

ε(Ω).

As HΓ0,Γ1,ε(Ω) is finite dimensional we may assume (after extracting a sub-

sequence) that EH,ℓ converges strongly in L2ε(Ω). Since H1(Ω)
cpt
↪→ L2(Ω) by

Rellich’s selection theorem, we may assume that also the regular potentials
ugrad,ℓ and Erot,ℓ converge strongly in L2(Ω). Moreover, ugrad,ℓ|Γ and Erot,ℓ|Γ
are bounded in H1/2(Γ) by the (scalar) trace theorem, and thus we may assume

by the compact embedding H1/2(Γ)
cpt
↪→ L2(Γ) that ugrad,ℓ|Γ and Erot,ℓ|Γ converge

strongly in L2(Γ). In particular, ugrad,ℓ|Γ1 and Erot,ℓ|Γ0 converge strongly in
L2(Γ1) and L2(Γ0), respectively. After all this successively taking subsequences
we obtain (using L2ε(Ω)-orthogonality and the definition of the L2(Γ1)-traces of
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γΓ1ν εEℓ and the L2(Γ0)-traces of γ
Γ0
τ Eℓ from Definition 8.2.1)∥∥grad(ugrad,ℓ − ugrad,k)∥∥2L2

ε(Ω)

=
〈
grad(ugrad,ℓ − ugrad,k), Eℓ − Ek

〉
L2
ε(Ω)

= −
〈
ugrad,ℓ − ugrad,k,div ε(Eℓ − Ek)

〉
L2(Ω)

+
〈
γΓ10 (ugrad,ℓ − ugrad,k), γΓ1ν ε(Eℓ − Ek)

〉
L2(Γ1)

≤ c∥ugrad,ℓ − ugrad,k∥L2(Ω) + c
∥∥(ugrad,ℓ − ugrad,k)|Γ1∥∥L2(Γ1)

→ 0

and∥∥ε−1 rot(Erot,ℓ − Erot,k)
∥∥2
L2
ε(Ω)

=
〈
ε−1 rot(Erot,ℓ − Erot,k), Eℓ − Ek

〉
L2
ε(Ω)

=
〈
Erot,ℓ − Erot,k, rot(Eℓ − Ek)

〉
L2(Ω)

+
〈
γΓ0τ×(Erot,ℓ − Erot,k), γ

Γ0
τ (Eℓ − Ek)

〉
L2(Γ0)

≤ c∥Erot,ℓ − Erot,k∥L2(Ω) + c
∥∥(Erot,ℓ − Erot,k)|Γ0

∥∥
L2(Γ0)

→ 0.

Hence, (Eℓ) contains a strongly L2ε(Ω)-convergent (and thus strongly L2(Ω)-
convergent) subsequence. ❑

Remark 8.4.2 (compact embedding for vector fields with inhomogeneous mixed
boundary conditions). Theorem 8.4.1 even holds for weaker boundary data. For

this, let 0 ≤ s < 1/2. Taking into account the compact embedding H1/2(Γ)
cpt
↪→

Hs(Γ) and looking at the latter proof, we see that

{E ∈ H(rot,Ω) | γΓ0τ E ∈ H−s(Γ0)}

∩ {E ∈ ε−1H(div,Ω) | γΓ1ν εE ∈ H−s(Γ1)}
cpt
↪→ L2(Ω).

8.5 Applications

8.5.1 Friedrichs/Poincaré Type Estimates

A first application is the following estimate:

Theorem 8.5.1 (Friedrichs/Poincaré type estimate for vector fields with inho-
mogeneous mixed boundary conditions). There exists a positive constant c such

that for all vector fields E in ĤΓ0(rot,Ω) ∩ ε−1ĤΓ1(div,Ω) ∩HΓ0,Γ1,ε(Ω)
⊥L2ε(Ω) it

holds

c∥E∥L2
ε(Ω) ≤ ∥rotE∥L2(Ω) + ∥div εE∥L2(Ω) + ∥γΓ0τ E∥L2(Γ0) + ∥γ

Γ1
ν εE∥L2(Γ1).
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Proof. For a proof we use a standard compactness argument using Theorem 8.4.1.
If the estimate was wrong, then there exists a sequence (Eℓ) ∈ ĤΓ0(rot,Ω) ∩
ε−1ĤΓ1(div,Ω) ∩HΓ0,Γ1,ε(Ω)

⊥L2ε(Ω) with ∥Eℓ∥L2
ε(Ω) = 1 and

∥rotEℓ∥L2(Ω) + ∥div εEℓ∥L2(Ω) + ∥γΓ0τ Eℓ∥L2(Γ0) + ∥γ
Γ1
ν εEℓ∥L2(Γ1) → 0.

Thus, by Theorem 8.4.1 (after extracting a subsequence)

Eℓ → E in ĤΓ0(rot,Ω) ∩ ε−1ĤΓ1(div,Ω) ∩HΓ0,Γ1,ε(Ω)
⊥L2ε(Ω) (strongly)

and rotE = 0 and div εE = 0 (by testing). Moreover, for all Φ ∈ C∞
Γ1
(Ω) and for

all ϕ ∈ C∞
Γ0
(Ω)

⟨rotΦ, Eℓ⟩L2(Ω) − ⟨Φ, rotEℓ⟩L2(Ω) = ⟨γΓ0τ×Φ, γ
Γ0
τ Eℓ⟩L2(Γ0) ≤ c∥γ

Γ0
τ Eℓ∥L2(Γ0) → 0,

and

⟨gradϕ, εEℓ⟩L2(Ω) + ⟨ϕ, div εEℓ⟩L2(Ω)

= ⟨γΓ10 ϕ, γΓ1ν εEℓ⟩L2(Γ1) ≤ c∥γ
Γ1
ν εEℓ∥L2(Γ1) → 0,

cf. Definition 8.2.1, implying

⟨rotΦ, E⟩L2(Ω) = 0 and ⟨gradϕ, εE⟩L2(Ω) = 0.

Hence, E ∈ HΓ0,0(rot,Ω) ∩ ε−1HΓ1,0(div,Ω) = HΓ0,Γ1,ε(Ω) by [6, Theorem 4.7]
(weak and strong homogeneous boundary conditions coincide). This shows E = 0
as E⊥L2

ε(Ω)HΓ0,Γ1,ε(Ω), in contradiction to 1 = ∥Eℓ∥L2
ε(Ω) → ∥E∥L2

ε(Ω) = 0. ❑

Remark 8.5.2 (Friedrichs/Poincaré type estimate for vector fields with inhomoge-
neous mixed boundary conditions). As in Remark 8.4.2 there are corresponding
generalised Friedrichs/Poincaré type estimates for weaker boundary data, where
the L2(Γ0/1)-spaces and norms are replaced by H−s(Γ0/1)-spaces and norms.

8.5.2 A div-curl Lemma

Another immediate consequence is a div-curl-lemma.

Theorem 8.5.3 (div-curl lemma for vector fields with inhomogeneous mixed

boundary conditions). Let (En) and (Hn) be bounded sequences in ĤΓ0(rot,Ω)

and ĤΓ1(div,Ω), respectively. Then there exist E ∈ ĤΓ0(rot,Ω) and H ∈
ĤΓ1(div,Ω) as well as subsequences, again denoted by (En) and (Hn), such

that En ⇀ E in ĤΓ0(rot,Ω) and Hn ⇀ H in ĤΓ1(div,Ω) as well as

⟨En, Hn⟩L2(Ω) → ⟨E,H⟩L2(Ω).

Proof. We follow in closed lines the proof of [43, Theorem 3.1]. Let (En) and
(Hn) be as stated. First, we pick subsequences, again denoted by (En) and (Hn),
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and E and H, such that En ⇀ E in ĤΓ0(rot,Ω) and Hn ⇀ H in ĤΓ1(div,Ω). In
particular,

γΓ1ν Hn ⇀ γΓ1ν H in L2(Γ1). (8.1)

To see (8.1), let γΓ1ν Hn ⇀ HΓ1 in L2(Γ1). Since for all ϕ ∈ H1
Γ0
(Ω)

⟨γΓ10 ϕ,HΓ1⟩L2(Γ1) ← ⟨γ
Γ1
0 ϕ, γ

Γ1
ν Hn⟩L2(Γ1) = ⟨gradϕ,Hn⟩L2(Ω) + ⟨ϕ, divHn⟩L2(Ω)

→ ⟨gradϕ,H⟩L2(Ω) + ⟨ϕ, divH⟩L2(Ω),

we get H ∈ ĤΓ1(div,Ω) and γΓ1ν H = HΓ1 . Moreover, ⟨γΓ10 ϕ, γΓ1ν Hn⟩L2(Γ1) →
⟨γΓ10 ϕ, γΓ1ν H⟩L2(Γ1). As γΓ10 H1

Γ0
(Ω) is dense in L2(Γ1) and

(
⟨ · , γΓ1ν Hn⟩L2(Γ1)

)
is

uniformly bounded with respect to n we obtain (8.1).

By Theorem 8.3.2 we have the orthogonal Helmholtz decomposition

ĤΓ0(rot,Ω) ∋ En = gradun + Ẽn

with un ∈ H1
Γ0
(Ω) and Ẽn ∈ ĤΓ0(rot,Ω) ∩ HΓ1,0(div,Ω) as gradH1

Γ0
(Ω) ⊂

HΓ0,0(rot,Ω) ⊂ ĤΓ0(rot,Ω). By orthogonality and the Friedrichs/Poincaré esti-
mate, (un) is bounded in H1

Γ0
(Ω) and hence contains a strongly L2(Ω)-convergent

subsequence, again denoted by (un). (For Γ0 = ∅ we may have to add a constant

to each un.) Moreover, as (un|Γ) is bounded in H1/2(Γ)
cpt
↪→ L2(Γ) we may as-

sume that (un|Γ) converges strongly in L2(Γ). In particular, (γΓ10 un) = (un|Γ1)
converges strongly in L2(Γ1). The sequence (Ẽn) is bounded in ĤΓ0(rot,Ω) ∩
HΓ1,0(div,Ω) by orthogonality and since rot Ẽn = rotEn and γΓ0τ Ẽn = γΓ0τ En.
Theorem 8.4.1 yields a strongly L2(Ω)-convergent subsequence, again denoted

by (Ẽn). Hence, there exist u ∈ H1
Γ0
(Ω) and Ẽ ∈ ĤΓ0(rot,Ω)∩HΓ1,0(div,Ω) such

that un ⇀ u in H1
Γ0
(Ω) and un → u in L2(Ω) and γΓ10 un → γΓ10 u in L2(Γ1) as

well as Ẽn ⇀ Ẽ in ĤΓ0(rot,Ω)∩HΓ1,0(div,Ω) and Ẽn → Ẽ in L2(Ω). Finally, we
compute

⟨En, Hn⟩L2(Ω) = ⟨gradun, Hn⟩L2(Ω) + ⟨Ẽn, Hn⟩L2(Ω)

= −⟨un,divHn⟩L2(Ω) + ⟨γΓ10 un, γΓ1ν Hn⟩L2(Γ1) + ⟨Ẽn, Hn⟩L2(Ω)

→ −⟨u,divH⟩L2(Ω) + ⟨γΓ10 u, γΓ1ν H⟩L2(Γ1) + ⟨Ẽ,H⟩L2(Ω)

= ⟨gradu,H⟩L2(Ω) + ⟨Ẽ,H⟩L2(Ω) = ⟨E,H⟩L2(Ω),

since indeed E = gradu+ Ẽ holds by the weak convergence. ❑

Remark 8.5.4 (div-curl lemma for vector fields with inhomogeneous mixed bound-
ary conditions). As in Remark 8.4.2 and Remark 8.5.2 there are corresponding
generalised div-curl lemmas for weaker boundary data, where the L2(Γ0/1)-spaces
and norms are replaced by H−s(Γ0/1)-spaces and norms.
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8.5.3 Maxwell’s Equations with Mixed Impedance Type
Boundary Conditions

Let ε, µ be admissible and time-independent matrix fields, and let T, k ∈ R+.
We consider Maxwell’s equations with mixed tangential and impedance boundary
conditions

∂
∂tE − ε

−1 rotH = F (Ampère/Maxwell law) (8.2a)
∂
∂tH + µ−1 rotE = G (Faraday/Maxwell law) (8.2b)

div εE = ρ, (Gauß law) (8.2c)

divµH = 0, (Gauß law for magnetism) (8.2d)

γΓ0τ E = 0, (perfect conductor bc) (8.2e)

γΓ0ν H = f, (normal trace bc) (8.2f)

γΓ1τ E + kγΓ1τ×H = 0, (impedance bc) (8.2g)

E(0) = E0 (electric initial value) (8.2h)

H(0) = H0 (magnetic initial value) (8.2i)

Note that the impedance boundary condition, also called Leontovich boundary
condition, is of Robin type and that the impedance is given by λ = 1/k =

√
ε/µ,

if ε, µ ∈ R+.
Despite of other recent and very powerful approaches such as the concept of

“evolutionary equations”, see the pioneering work of Rainer Picard, e.g., [50, 37],
one can use classical semigroup theory for solving the Maxwell system (8.2).

We will split the system (8.2) into two static systems and a dynamic system.
For simplicity we set ε = µ = 1 and F = G = 0. The static systems are

rotE = 0, rotH = 0, (8.3a)

divE = ρ, divH = 0, (8.3b)

γΓ0τ E = 0, γΓ0ν H = f, (8.3c)

γΓ1τ E = −kg, γΓ1τ×H = g, (8.3d)

where g is any suitable tangential vector field in L2(Γ1). For simplicity we put
g = 0, then these two systems are solvable by [4, Theorem 5.6]. However, the
same result also gives conditions for which g ̸= 0 this system is solvable. The
dynamic system is

∂
∂tE = rotH, (8.4a)
∂
∂tH = − rotE, (8.4b)

divE = 0, (8.4c)

divH = 0, (8.4d)

γΓ0ν H = 0, (8.4e)

γΓ0τ E = 0, (8.4f)

γΓ1τ E + kγΓ1τ×H = 0. (8.4g)
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The initial conditions for the dynamic system are E(0) = E0 − Estat and
H(0) = H0 − Hstat, where Estat and Hstat are the solutions of the two static
systems (8.3). We can write (8.4a) and (8.4b) as

d

dt

[
E
H

]
=

[
0 rot
− rot 0

]
︸ ︷︷ ︸

=:A0

[
E
H

]
,

and the boundary conditions (8.4f) and (8.4g) shall be covered by the domain of
A0:

domA0 :=
{
(E,H) ∈ ĤΓ(rot,Ω)× ĤΓ1(rot,Ω)

∣∣∣ γΓ0τ E = 0, γΓ1τ E + kγΓ1τ×H = 0
}
.

Here, we did ignore the equations divE = 0, divH = 0 and γΓ0ν H = 0. However,
A0 is a generator of a C0-semigroup, by Section 6.4. The next lemma provides a
tool to respect the remaining conditions of (8.4) as well.

Lemma 8.5.5. Let T (·) be a C0-semigroup on a Banach space X, and let
A be its generator. Then every subspace V ⊇ ranA is invariant under T (·).
Moreover, A

∣∣
V

generates the strongly continuous semigroup TV (·) := T (·)
∣∣
V
, if

V is additionally closed in X.

Proof. Let t ≥ 0 and let x ∈ V . Then ranA ∋ A
∫ t

0
T (s)xds = T (t)x − x and

hence T (t)x ∈ V . The remaining assertion follows from [15, Chapter II, Section
2.3]. ❑

Therefore, it is left to show that the remaining conditions establish a closed
and invariant subspace under the semigroup T0 generated by A0 or contains
ranA0. Note that by Theorem 8.3.1

S :=
{
(E,H)

∣∣ divE = 0, divH = 0, γΓ0ν H = 0
}

= H0(div,Ω)× HΓ0,0(div,Ω)

=
(
rotH(rot,Ω)× rotHΓ0(rot,Ω)

)
⊕
(
HΓ,∅(Ω)×HΓ1,Γ0(Ω)

)
.

This space is closed as the intersection of kernels of closed operators. Clearly,
HΓ,∅(Ω) × HΓ1,Γ0(Ω) is invariant under T0, since every (E,H) ∈ HΓ,∅(Ω) ×
HΓ1,Γ0(Ω) is a constant in time solution of the system (8.4), i.e.,

T0(t)

[
E
H

]
=

[
E
H

]
.

By

rotH(rot,Ω)× rotHΓ0(rot,Ω) =

[
0 rot
− rot 0

] (
HΓ0(rot,Ω)×H(rot,Ω)

)
⊇ ranA0

and Lemma 8.5.5 we have that also rotH(rot,Ω) × rotHΓ0(rot,Ω) is invariant
under T0. Hence, Lemma 8.5.5 and Theorem 8.4.1 imply the next theorem.
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Theorem 8.5.6. A := A0

∣∣
S
is a generator of a C0-semigroup and

domA ⊆
(
ĤΓ(rot,Ω) ∩ H(div,Ω)

)
×
(
ĤΓ1(rot,Ω) ∩ HΓ0(div,Ω)

) cpt
↪→ L2(Ω).

Consequently, every resolvent operator of A is compact.

If HΓ,∅(Ω) = {0} and HΓ1,Γ0(Ω) = {0}, then 0 is in the resolvent set of A

and A−1 is compact. Alternatively, we can further restrict A to HΓ,∅(Ω)
⊥L2(Ω) ×

HΓ1,Γ0(Ω)
⊥L2(Ω) . This would also match our separation of static solutions and

dynamic solutions, since solutions with initial condition in HΓ,∅(Ω)×HΓ1,Γ0(Ω)
are constant in time.
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Appendix A

Appendix

A.1 G̊arding Inequalities

In this section we want to show that there is a Fredholm alternative for sesquilin-
ear forms that are non-coercive, but satisfy a G̊arding inequality. In [66] this
concept is presented in a less abstract way for differential operators.

Definition A.1.1. Let X0 and X1 be Hilbert spaces and K : X1 → X0 be a
compact linear operator. A sesquilinear form b : X1×X1 → C satisfies a G̊arding
inequality, if

Re b(u, u) ≥ C1∥u∥2X1
− C2∥Ku∥2X0

for all u ∈ X1.

In most applications K is a compact embedding, e.g. the embedding of H1(Ω)
into L2(Ω). Note that (by Lax-Milgram, e.g. [16]) for every bounded sesquilinear
form b(·, ·) on a Hilbert space there exists a bounded operator B : X1 → X1 such
that

b(u, v) = ⟨Bu, v⟩X1
for all u, v ∈ X1.

The operator B is injective if and only if b(·, ·) is non-degenerated.

Theorem A.1.2 (Fredholm alternative). Let b(·, ·) be a bounded sesquilinear
form on X1 that satisfies a G̊arding inequality. If the corresponding operator B
is injective (b(·, ·) is non-degenerated), then B is bijective.

Proof. The sesquilinear form b satisfies the G̊arding inequality

Re b(u, u) ≥ C1∥u∥2X1
− C2∥Ku∥2X0

for all u ∈ X1.

Hence, b̃(u, v) := b(u, v)+C2⟨Ku,Kv⟩X0
is coercive. The corresponding operator

B̃ is given by B + C2K
∗K. By the Lax-Milgram theorem B̃ is bijective. Note

that
B = B̃ − C2K

∗K = B̃(I− B̃−1C2K
∗K).

The injectivity of B implies that 1 is not an eigenvalue of B̃−1C2K
∗K and since

B̃−1C2K
∗K is compact, it is surjective. Consequently B is also surjective. ❑

131



132 APPENDIX A. APPENDIX

A.2 Solution Theory for the Wave Equation

In this section we will discuss a suitable solution concept for (7.1). We will
regard a solution w(·, ·) as a function in time mapping into spatial function
space.

An integrated version of the PDE is

ρ(ζ)
∂

∂t
w(t, ζ)− ρ(ζ)w1(ζ) =

∫ t

0

div T (ζ) gradw(s, ζ) ds.

We will demand that a solution will satisfy this integrated version of the PDE.
If we assume that both∫ t

0

div T (ζ) gradw(s, ζ) ds and div T (ζ)

∫ t

0

gradw(s, ζ) ds

exist, then they coincide and

ρ(ζ)
∂

∂t
w(t, ζ)− ρ(ζ)w1(ζ) = div T (ζ)

∫ t

0

gradw(s, ζ) ds.

This is a consequence of the closedness of div. For a classical solution (w ∈
C2(R+ × Ω) ∩ C1(R+ × Ω)) these integrals coincide.

We will also regard an integrated version of the boundary conditions:∫ t

0

d

ds
w(s, ζ) ds = −k

∫ t

0

ν · T gradw(s, ζ) ds

for all ζ ∈ Γ1. Again for classical solutions this can be manipulated to

w(t, ζ)− w(0, ζ) = −kν · T
∫ t

0

gradw(s, ζ) ds for all ζ ∈ Γ1,

γ0w(t, ·)
∣∣
Γ1
− γ0w(0, ·)

∣∣
Γ1

= −kγν
(
T

∫ t

0

gradw(s, ·) ds
)∣∣∣

Γ1

.

Definition A.2.1. Let w0 ∈ H1(Ω) and w1 ∈ L2(Ω). Then we say that w(·, ·) is
a solution of (7.1), if t 7→ w(t, ·) is C1(R+; L

2(Ω)) ∩ C0(R+;H
1(Ω)), and

ρ
d

dt
w(t, ·)− ρw1 = div T

∫ t

0

gradw(s, ·) ds,

w(0, ·) = w0,

d

dt
w(t, ·)

∣∣∣
t=0

= w1,

γ0w(t, ·)
∣∣
Γ0

= h,

γ0w(t, ·)
∣∣
Γ1
− γ0w0

∣∣
Γ1

= −kγν
(
T

∫ t

0

gradw(s, ·) ds
)∣∣∣

Γ1

,

for all t ∈ R+.
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Proposition A.2.2. Let w is a solution of (7.1) in the sense of Definition A.2.1
and we the solution of the equilibrium system (7.2). Then[

ρ ∂
∂tw(t, ·)

gradw(t, ·)− gradwe

]
and T (t)

[
ρw1

gradw0 − gradwe

]
coincide, where T is the semigroup generated by A.

On the other hand, let x1 denote the first component of the solution given by
the semigroup. Then

w(t, ·) :=
∫ t

0

1

ρ
x1(s) ds+ w0 + we

is a solution of (7.1) in the sense of Definition A.2.1.

Remark A.2.3. If we regard the semigroup T0 generated by A0, we can even
cancel out gradwe and obtain[

ρ ∂
∂tw(t, ·)

gradw(t, ·)

]
= T0(t)

[
ρw1

gradw0

]
Theorem A.2.4. The system (7.2) is solvable for h ∈ H1/2(Γ0).

Proof. Let H ∈ H1(Ω) such that h = γ0H
∣∣
Γ0
. The weak formulation of (7.2) is:

find a w̃ ∈ H1
Γ0
(Ω) such that

⟨grad w̃, grad v⟩L2(Ω) = −⟨gradH, grad v⟩L2(Ω)

for all v ∈ H1
Γ0
(Ω). Then we = w̃ + H. By the Lax-Milgram theorem this is

solvable. ❑

A.3 Uncategorized

Lemma A.3.1 (Polarization identity). Let X be a vector space and b : X×X →
C be a sesquilinear form. Then

4b(x, y) = b(x+ y, x+ y)− b(x− y, x− y) + ib(x+ iy, x+ iy)− ib(x− iy, x− iy).

Proof. Note that

b(x+ y, x+ y) = b(x, x) + b(x, y) + b(y, x) + b(y, y),

−b(x− y, x− y) = −b(x, x) + b(x, y) + b(y, x)− b(y, y),
ib(x+ iy, x+ iy) = ib(x, x) + b(x, y)− b(y, x) + ib(y, y),

−ib(x− iy, x− iy) = −ib(x, x) + b(x, y)− b(y, x)− ib(y, y).

Summing these four equations yields the statement. ❑
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Lemma A.3.2. Let (xn)n∈N be a sequence in a normed vector space X that
converges w.r.t. the weak topology to an x0 ∈ X. Then (xn)n∈N is bounded i.e.
supn∈N∥xn∥X < +∞.

Proof. Let ι denote the canonical embedding from X into X ′′ that maps x to
⟨x, ·⟩X,X′ . Then, by assumption, for every fixed ϕ ∈ X ′ (ιxn)(ϕ)→ (ιx0)(ϕ), in
particular supn∈N|(ιxn)(ϕ)| <∞. The principle of uniform boundedness yields
supn∈N∥ιxn∥X′′ < +∞. Since ∥ιx∥X′′ = ∥x∥X for every x ∈ X, this proves the
assertion. ❑

Lemma A.3.3. Let (xn)n∈N be a weak convergent sequence in a Hilbert space
H with limit x. Then there exists a subsequence (xn(k))k∈N such that∥∥∥∥ 1

N

N∑
k=1

xn(k) − x
∥∥∥∥→ 0.

Proof. We assume that x = 0. For the general result we just need to replace xn
by xn − x.

We define the subsequence inductively: n(1) = 1 and for k > 1 we choose
n(k) such that

|⟨xn(k), xn(j)⟩| ≤
1

k
for all j < k.

This is possible, because (xn)n∈N converges weakly to 0. Hence, by Lemma A.3.2
supn∈N∥xn∥ ≤ C. This yields∥∥∥∥ 1

N

N∑
k=1

xn(k)

∥∥∥∥2 =
1

N2

N∑
k=1

N∑
j=1

⟨xn(k), xn(j)⟩

=
1

N2

N∑
k=1

∥xn(k)∥2 +
1

N2

N∑
j=1

N∑
k=j+1

2Re⟨xn(k), xn(j)⟩

≤ 1

N
C2 +

2

N2

N∑
j=1

N∑
k=j+1

1

k
≤ C2

N
+

1

N
ln(N)→ 0. ❑
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