Exercise 1. Let $k, m > 0$. Solve the following system:

$$
\frac{d}{dt} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} \frac{1}{m} & 0 \\ -k & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}, \quad t \ge 0,
$$

$$
x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.
$$

Exercise 2. Let X be the vector space of all complex functions on the unit interval $[0, 1]$. For any $x \in X$ consider the function $p_x \colon X \to \mathbb{R}$ defined by

$$
p_x(f) = |f(x)|, \quad f \in X.
$$

- (a) Prove that $\mathcal{P} := \{p_x \mid x \in [0,1]\}$ is a separating family of seminorms on X.
- (b) Show that the locally convex topology on X induced by the family of seminorms $\mathcal P$ is the topology of pointwise convergence on X. \diamond

Exercise 3. Let $\Omega = (-1, 1)$. Compute the distributional derivative of the following functions

- (a) $f(x) = |x|$, for $x \in \Omega$,
- (b) $f(x) = x^3 + x + 1$, for $x \in \Omega$,

(c)
$$
f(x) = 1_{(0,1)}(x)
$$
, for $x \in \Omega$.

Exercise 4. Let Ω be an open subset of \mathbb{R} . Let $f \in L^1_{loc}(\Omega)$ and $\psi \in C^{\infty}(\Omega)$. Prove that

$$
(\psi f)' = \psi f' + \psi' f \quad \text{(in the distributional sense)}.
$$

Exercise 1. Let $\Omega \subseteq \mathbb{R}^d$ be open, $\Lambda \in \mathcal{D}'(\Omega)$ and $\psi \in C^{\infty}(\Omega)$. Then show that

(a) $D^{\alpha}D^{\beta}\Lambda = D^{\beta}D^{\alpha}\Lambda$ for all $\alpha, \beta \in \mathbb{N}_0^d$,

- (b) $D^{\alpha}D^{\beta}\Lambda = D^{\alpha+\beta}\Lambda$ for all $\alpha, \beta \in \mathbb{N}_0^d$,
- (c) $D^{\alpha}(\psi \Lambda) = \psi D^{\alpha} \Lambda + (D^{\alpha} \psi) \Lambda$ for all $\alpha \in \mathbb{N}^d$ such that $|\alpha| = 1$.

Exercise 2. Let $\Omega \subseteq \mathbb{R}^d$ be open and endow $\mathcal{D}(\Omega)$ with topology that is induces by the family of seminorms $P := \{ ||\cdot||_n \mid n \in \mathbb{N} \}$, where

$$
\|\phi\|_{n} = \sup_{|\alpha| \leq n} \sup_{x \in \Omega} |D^{\alpha}\phi(x)|.
$$

Show that the topology that is induced by P is metrizable, i.e., there exists a metric that induces the same topology. What is the difference between this new topology and the topology that we have introduced in the lecture for $\mathcal{D}(\Omega)$?

Hint: Think of a sequence that converges to 0 w.r.t. to the new topology that does not converge to 0 w.r.t. the topology of the lecture. Why are these additional convergent sequences undesired? ✧

Exercise 3. Let $\Omega \subseteq \mathbb{R}^d$ be open. Find a distribution $\Lambda \in \mathcal{D}'(\Omega)$ that is not the derivative of a regular distribution, namely such that there does not exist any function $f \in L^1_{loc}(\Omega)$ and any $\alpha \in \mathbb{N}_0^d$ such that $\Lambda = \mathcal{D}^{\alpha} \Lambda_f$.

Hint: For $\Omega = \mathbb{R}$, construct a distribution using Dirac distributions and their derivatives. ✧

Exercise 4. Prove the following lemmata.

(a) Let $(f_m)_{m\in\mathbb{N}}$ be a sequence in $L^1_{loc}(\Omega)$ that converges pointwise to $f \in L^1_{loc}(\Omega)$ such that for every compact $K \subseteq \Omega$ there exists an integrable function g_K such that $|f_m(x)| \le g_K(x)$ for a.e. $x \in K$. Then f_m converges to f in $\mathcal{D}'(\Omega)$, i.e.,

$$
\lim_{m \in \mathbb{N}} \langle f_m, \phi \rangle = \langle f, \phi \rangle
$$

for all $\phi \in \mathcal{D}(\Omega)$.

(b) Let $(\Lambda_m)_{m\in\mathbb{N}}$ be a sequence in $\mathcal{D}'(\Omega)$ that converges to $\Lambda \in \mathcal{D}'(\Omega)$ in $\mathcal{D}'(\Omega)$. Then $D^{\alpha}\Lambda_m$ converges to $D^{\alpha}\Lambda$ in $\mathcal{D}'(\Omega)$ for every $\alpha \in \mathbb{N}_0^d$. \Leftrightarrow \L

Exercise 5. Let $\hat{\rho}$: $\mathbb{R}^d \to \mathbb{R}$ be the function defined by

$$
\hat{\rho}(x) = \begin{cases} \exp\left(\frac{1}{\|x\|_2^2 - 1}\right), & \|x\|_2 < 1, \\ 0, & \text{else.} \end{cases}
$$

Moreover, consider the functions $\rho \coloneqq \frac{1}{\|\hat{\mathbf{a}}\|}$ $\frac{1}{\|\hat{\rho}\|_{L^1}}\hat{\rho}$ and

$$
\rho_{\epsilon}(x) \coloneqq \epsilon^{-d} \rho\left(\frac{x}{\epsilon}\right).
$$

Show that ρ_{ϵ} converges to the Dirac distribution δ_0 in $\mathcal{D}'(\Omega)$ as $\epsilon \to 0$ for any open $\Omega \subseteq \mathbb{R}^d$ that contains 0. \diamond

Exercise 1. Prove that every classical solution is also a distributional solution. \diamondsuit

Exercise 2. Prove that every regular distribution can be approximated with test functions with respect to the weak*-topology.

Hint: Use cut-off functions and mollifiers as in the proof of Corollary 2.1.5. \diamond

Exercise 3. Prove that the space of test functions is dense in the space of distributions with respect to the weak*-topology.

Hint: Use first that every distribution is locally the derivative of a regular distribution. Then, combine this with [Exercise 2.](#page-0-0) \diamond

Exercise 4. Check that the function

$$
u_0(x) = -\frac{1}{2\pi} \ln|x| = -\frac{1}{2\pi} \ln\left(\sqrt{x_1^2 + x_2^2}\right)
$$

is the fundamental solution of the differential operator $L = \Delta$ in \mathbb{R}^2 . *Hint*: First show that $Lu_0(x) = 0$ for $x \neq 0$. Then show that for $\Omega_{\epsilon} := \Omega \setminus \overline{\mathcal{B}}_{\epsilon}(0)$ that

$$
\lim_{\epsilon \to 0} \int_{\Omega_{\epsilon}} u_0 L \phi \, d\lambda = \phi(0) \quad \forall \phi \in \mathcal{D}(\mathbb{R}^2).
$$

This can be done by the integration by parts formula in \mathbb{R}^2 . Note that u_0 is constant on $\partial\Omega_{\epsilon}$ for every fixed ϵ . \Leftrightarrow

Exercise 5. Show that

$$
u_0(x) = \frac{|x|^2}{8\pi} \ln(|x|) = \frac{x_1^2 + x_2^2}{8\pi} \ln\left(\sqrt{x_1^2 + x_2^2}\right)
$$

is a fundamental solution for $L = \Delta^2$ in \mathbb{R}^2

 \rightarrow

Exercise 1. Show that the following sets are Lipschitz domains

- (a) $[0, 1] \times [0, 1]$
- (b) $B_1(0) \subset \mathbb{R}^2$

Exercise 2. Let $\Omega \subseteq \mathbb{R}^d$ be a Lipschitz domain, $f \in C_c^{\infty}(\mathbb{R}^d)^d$ and $g \in C_c^{\infty}(\mathbb{R}^d)$. Show the integration by parts formula

 \rightarrow

$$
\int_{\Omega} (\operatorname{div} f) g \, d\lambda + \int_{\Omega} f \cdot \nabla g \, d\lambda = \int_{\partial \Omega} \nu \cdot f g \, d\mu.
$$

Moreover, show that

$$
\operatorname{div} f(x) = \lim_{r \to 0} \frac{1}{\lambda(\mathcal{B}_r(x))} \int_{\partial \mathcal{B}_r(x)} \nu \cdot f \, \mathrm{d}\mu
$$

What does this mean? In context of sink or source? Hint: Find a product rule for div. \diamond

The curl operator for a vector field $E \in C^1(\mathbb{R}^3)^3$ is defined by

$$
\operatorname{curl} E = \nabla \times E = \begin{bmatrix} 0 & -\partial_3 & \partial_2 \\ \partial_3 & 0 & -\partial_1 \\ -\partial_2 & \partial_1 & 0 \end{bmatrix} \begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix} = \begin{bmatrix} -\partial_3 E_2 + \partial_2 E_3 \\ \partial_3 E_1 - \partial_1 E_3 \\ -\partial_2 E_1 + \partial_1 E_2 \end{bmatrix}
$$

Exercise 3. Let $\Omega \subseteq \mathbb{R}^3$ be a Lipschitz domain, $E, H \in C_c^{\infty}(\mathbb{R}^3)$. Show that

$$
\int_{\Omega} \operatorname{curl} E \cdot H \, d\lambda - \int_{\Omega} E \cdot \operatorname{curl} H \, d\lambda = \int_{\partial \Omega} \nu \times E \cdot H \, d\mu
$$

$$
= \int_{\partial \Omega} \left[\nu \times E \right] \cdot \left[(\nu \times H) \times \nu \right] d\mu.
$$

Moreover, show that

$$
\operatorname{curl} E(x) = \lim_{r \to 0} \frac{1}{\lambda(B_r(x))} \int_{\partial B_r(x)} \nu \times E \, \mathrm{d}\mu
$$

What is the geometrical meaning of $\nu \times E$, $(\nu \times H) \times \nu$ and limit representation of curl $E(x)$?

Hint: Look at the integrals component-wise in order to apply Stokes' theorem. \diamond

We define

$$
\mathcal{C}^{\infty}(\overline{\Omega}) \coloneqq \left\{ f \big|_{\Omega} \, \big| \, f \in \mathcal{C}_{\mathrm{c}}^{\infty}(\mathbb{R}^d) \right\}
$$

Recall that

$$
\mathrm{B}_{\epsilon}(\Omega) = \bigcup_{x \in \Omega} \mathrm{B}_{\epsilon}(x).
$$

Exercise 4. Let Ω be bounded. Show for $\epsilon > 0$ that

$$
C^{\infty}(\overline{\Omega}) = \{ f|_{\Omega} | f \in C^{\infty}(\mathbb{R}^d) \} = \{ f|_{\Omega} | f \in C^{\infty}(\mathcal{B}_{\epsilon}(\Omega)) \}.
$$

Exercise 5. Let X, Y be Banach spaces and $A: X \rightarrow Y$ a bounded linear mapping, i.e., $A \in \mathcal{L}_{\text{b}}(X, Y)$. Show that: if $||Ax|| \ge c||x||$ for a $c > 0$, then A is injective and ran A is $\csc d$. \Leftrightarrow

Let $\Omega \subseteq \mathbb{R}^d$ be a bounded domain, A be a measurable matrix-valued function such that $c^{-1} \leq A \leq c$ for a $c > 0$ and $L := -$ div $A\nabla$.

Exercise 1. Let $b: \mathring{H}^1(\Omega) \times \mathring{H}^1(\Omega) \to \mathbb{C}$ be the sesquilinear form defined by

$$
b(u, v) = \langle A \nabla u, \nabla v \rangle_{L^2(\Omega)} \quad \forall u, v \in \mathring{H}^1(\Omega).
$$

Prove that b is coercive, i.e., it exists a $C > 0$ such that $b(u, u) \geq C ||u||^2_{\dot{H}^1(\Omega)}$ for all $u \in \mathring{H}^1(\Omega)$. (Ω) .

Exercise 2. Consider a weak solution u of $Lu = f$ in Ω and $u = 0$ on $\partial\Omega$. Prove that u is a distributional solution.
◆

Exercise 3. Find the weak formulation of $Lu = f$ in Ω and $\nu \cdot A\nabla u = 0$ (Neumann boundary conditions). ✧

Exercise 4. Show that the following maps are continuous:

(a)
$$
\frac{d}{dx}
$$
: C¹(\mathbb{R}) \subseteq L²(\mathbb{R}) \rightarrow H⁻¹(\mathbb{R});
(b) div: C¹(Ω) \subseteq L²(Ω) \rightarrow H⁻¹(Ω).

Exercise 5. (a) Show that $H^{-1}(\Omega)$ is a Hilbert space;

(b) Consider the map $\Phi: H^{-1}(\Omega) \to \mathring{H}^1(\Omega)$ such that

$$
\langle \Phi f, g \rangle_{\mathring{\mathrm{H}}^1(\Omega)} = \langle f, g \rangle_{\mathrm{H}^{-1}(\Omega), \mathring{\mathrm{H}}^1(\Omega)} \quad \forall f \in \mathrm{H}^{-1}(\Omega) \, \forall g \in \mathring{\mathrm{H}}^1(\Omega).
$$

Prove that the Riesz isomorphism Φ is unitary, i.e., $\Phi^* = \Phi^{-1}$.
 \diamond

Exercise 1. We regard the one-dimension Laplacian equation on the interval $(0, 1)$, which is the following differential equation

$$
-u''(x) = 1,
$$

or weakly $\langle u', \phi' \rangle_{L^2(0,1)} = \langle 1, \phi \rangle_{L^2(0,1)} \quad \forall \phi \in \mathring{H}^1(0,1).$

Furthermore, we regard the finite dimensional subspace $V_{\frac{1}{4}}$ that is spanned by the functions u_1 , u_2 and u_3 , which are given by

$$
u_j \colon \begin{cases} (0,1) \quad \to \quad \mathbb{C}, \\ & x \quad \mapsto \quad \begin{cases} 0, & x \leq t_{j-1}, \\ 4(x-t_{j-1}), & t_{j-1} < x \leq t_j, \\ 1-4(x-t_j), & t_j < x \leq t_{j+1}, \\ 0, & t_{j+1} < x, \end{cases} \end{cases}
$$

where $t_1 = 1/4$, $t_2 = 1/2$ and $t_3 = 3/4$. In [Figure 1](#page-5-0) we see the graphs of the functions u_1 , u_2 and u_3 .

Figure 1: Illustration of the functions u_1, u_2 and u_3 .

- (a) Use the Galerkin method to find an approximation of the solution.
- (b) Calculate the actual solution of the problem and compare it to the approximation. \diamond

Exercise 2. Show that $\frac{d}{dx}$: $H^1(0,1) \subseteq L^2(0,1) \rightarrow L^2(0,1)$ is a densely defined and closed operator. Moreover,

- (a) show $\frac{d}{dx}$ is not bounded,
- (b) and calculate the adjoint of $\frac{d}{dx}$ \rightarrow

Exercise 3. On the space $X = L^2(\mathbb{R})$ we consider the so-called *shift semigroup* $T: [0, +\infty)$ $\rightarrow \mathcal{L}_{b}(X)$ defined by

$$
T(t)f(s) = f(s+t), \quad \forall s \in \mathbb{R}, \ t \in [0,+\infty), \ f \in X.
$$

Show that

- (a) T is strongly continuous semigroup.
- (b) T is a contraction semigroup.

(c) the infinitesimal generator of T is given by $Af := f'$ with domain

$$
dom(A) = H^1(\mathbb{R}). \qquad \qquad \diamond
$$

Exercise 4. Let $A: \text{ dom } A \subseteq X \rightarrow X$ be densely defined and closed operator on a Hilbert space X that is diagonalizable, i.e., there exists a orthonormal basis $(\phi_n)_{n\in\mathbb{N}}$ of X and a sequence $(\alpha_n)_{n\in\mathbb{N}}$ in $\mathbb C$ such that

$$
A\phi_n = \alpha_n \phi_n.
$$

Show that A generates a strongly continuous semigroup, if there exists a $C \in \mathbb{R}$ such that $\text{Re }\alpha_i \leq C.$

Hint: Think of the action of the semigroup on the eigenvectors ϕ_i and conclude then by linearity the action on an arbitrary vector $x \in X$. \diamondsuit

Exercise 5. Prove that the Laplace operator

$$
\Delta \colon \mathrm{H}^2(\Omega) \cap \mathring{\mathrm{H}}^1(\Omega) \subseteq \mathrm{L}^2(\Omega) \to \mathrm{L}^2(\Omega)
$$

is maximally dissipative and conclude that the heat equation

$$
\partial_t u(t, x) = \Delta u(t, x), \qquad x \in \Omega, \quad t \ge 0,
$$

$$
u(t, x) = 0, \qquad x \in \partial\Omega, \quad t \ge 0,
$$

$$
u(0, x) = u_0(x), \qquad x \in \Omega
$$

has a unique solution that satifies $||u(t, \cdot)||_{L^2(\Omega)} \le ||u_0||_{L^2(\Omega)}$ for all $t \ge 0$.

Hint: In order to show maximality show that Δ (on the given domain) is self-adjoint \diamond