Current Preprints Link to heading

N. Skrepek. Quasi Gelfand triples, 2023. arXiv:2301.04610, [doi][pdf].

N. Skrepek. Characterizations of the Sobolev space H1 on the boundary of a strong Lipschitz domain in 3-D, 2023. arXiv:2304.06386, [doi][pdf].

A. Buchinger, N. Skrepek, and M. Waurick. Weak operator continuity for evolutionary equations, 2023. arXiv:2309.09499, [doi][pdf].

N. Skrepek and D. Pauly. Weak equals strong L2 regularity for partial tangential traces on Lipschitz domains, 2023. arXiv:2309.14977, [doi][pdf].

Ph.D. Thesis Link to heading

N. Skrepek. Linear port-Hamiltonian systems on multidimensional spatial domains, 2021. University of Wuppertal, [doi][pdf].

Published Link to heading

N. Skrepek and M. Waurick. Semi-uniform stabilization of anisotropic Maxwell’s equations via boundary feedback on split boundary, J. Differential Equations, 394:345-374, 2024. [doi][pdf].

J. Jäschke, N. Skrepek, and M. Ehrhardt. Mixed-dimensional geometric coupling of port-Hamiltonian systems. Appl. Math. Lett., 137:Paper No. 108508, 2023. [doi][pdf].

D. Pauly and N. Skrepek. A compactness result for the div-curl system with inhomogeneous mixed boundary conditions for bounded Lipschitz domains and some applications. ANNALI DELL’UNIVERSITÁ DI FERRARA, 69(2):505–519, 2023. [doi][pdf].

N. Skrepek. Well-posedness of linear first order port-Hamiltonian systems on multidimensional spatial domains. Evol. Equ. Control Theory, 10(4):965–1006, 2021. [doi][pdf].

B. Jacob and N. Skrepek. Stability of the multidimensional wave equation in port-Hamiltonian modelling. In 2021 60th IEEE Conference on Decision and Control (CDC), pages 6188–6193, 2021. [doi][pdf].

M. Kaltenbäck and N. Skrepek. Joint functional calculus for definitizable self-adjoint operators on Krein spaces. Integral Equations Operator Theory, 92(4):Paper No. 29, 36, 2020. [doi][pdf].